"CONSTRUCCIÓN EN PAVIMENTO ASFÁLTICO DE LA VÍA QUE COMUNICA LA VEREDA LA VENGANZA CON LA MARGINAL DE LA SELVA, EN EL MUNICIPIO DE TAURAMENA DEPARTAMENTO DEL CASANARE"

ESPECIFICACIONES TÉCNICAS DE CONSTRUCCIÓN

Casanare

ENERO DE 2024

TABLA DE CONTENIDO

Α	CTIVI	DADES PRELIMINARES	3
	1.1.	DESMONTE Y LIMPIEZA EN ZONAS NO BOSCOSAS	3
	1.2.	EXCAVACIONES VARIAS SIN CLASIFICAR, INCLUYE RETIRO	9
	1.3.	CONFORMACION DE LA CALZADA EXISTENTE	21
	1.4.	TRANSPORTE DE MATERIAL PRODUCTO DE LA EXCAVACIÓN	25
2	. CA	PAS GRANULARES	30
	2.1.	SUB BASE GRANULAR CLASE B	30
	2.2.	BASE GRANULAR CLASE B	46
		MATERIAL SELECCIONADO TMAX 4" PARA CONFIRMACIÓN RAPLÉN Y MEJORAMIENTO DEL TERRENO (INCLUYE SUMINIST ENDIDO, NIVELACIÓN, HUMEDECIDO Y COMPACTACIÓN)	RO,
3	. PA	VIMENTO FLEXIBLE	83
	3.1.	MEZCLA DENSA EN CALIENTE TIPO MDC-19	83
	3.2.	RIEGO IMPRIMACION CON EMULSION ASFÁLTICA	105
4	. CC	NSTRUCCION DE OBRAS DE DRENAJE	112
	4.1.	EXCAVACIONES VARIAS SIN CLASIFICAR, INCLUYE RETIRO	112
	4.2.	CONCRETO CLASE A (28 MPA) OBRAS DE DRENAJE	112
	4.3.	RELLENO PARA ESTRUCTURAS	187
	4.4.	ACERO DE REFUERZO 60000 PSI	201
	4.5.	TUBERIA DE CONCRETO REFORZADO 21MPA DE 900MM	212
	4.6 .	CONCRETO CLASE F	219
5		ÑALIZACION DEFINITIVA	
		SEÑAL VERTICAL DE TRANSITO TIPO II (1,2*0,4) CON LÁM ROREFLECTIVA	
	5.2.	LINEA DE DEMARCACION CON PINTURA EN FRIO	298
	5.3.	TACHA REFLECTIVA	322

ESPECIFICACIONES TÉCNICAS

ACTIVIDADES PRELIMINARES

1.1. DESMONTE Y LIMPIEZA EN ZONAS NO BOSCOSAS

200.1 Descripción

200.1.1 Generalidades

Este trabajo consiste en el desmonte y limpieza del terreno natural en las áreas que deben ocupar las obras del proyecto vial y las zonas o fajas laterales reservadas para la vía, que se encuentren cubiertas de rastrojo, maleza, bosque, pastos, cultivos, etc., incluyendo la remoción de tocones, raíces, escombros y basuras, de modo que el terreno quede limpio y libre de toda vegetación y su superficie resulte apta para iniciar los demás trabajos.

El trabajo debe incluir, también, el retiro y la disposición final dentro o fuera de la zona del proyecto, de todos los materiales provenientes de las operaciones de desmonte y limpieza, previa autorización del interventor, atendiendo las normas y disposiciones legales vigentes, entre ellas las obligaciones que deriven de los permisos y licencias emanadas de la autoridad ambiental competente; siendo de gran importancia el manejo y protección de la fauna silvestre contenidos en la guía ambiental; además de los aspectos generales dispuestos en el artículo 106, Aspectos ambientales y en los lineamientos ambientales para la construcción de infraestructura del Programa Nacional de Transporte Urbano, emitido por el Ministerio de Transporte (Plan de manejo forestal, silvicultura y paisajístico, entre otros).

Al finalizar cada jornada de trabajo no deben quedar elementos de la obra en estado inestable o peligroso.

200.1.2 Clasificación

El desmonte y limpieza se clasifica de acuerdo con los siguientes criterios:

200.1.2.1 Desmonte y limpieza en bosque

Comprende la tala de árboles, remoción de tocones, desraíce y limpieza de las zonas donde la vegetación se presenta en forma de bosque continuo.

200.1.2.2 Desmonte y limpieza en zonas no boscosas

Comprende el desraíce y la limpieza en zonas cubiertas de pastos, rastrojo, maleza, escombros, cultivos y arbustos. También comprende la remoción total de árboles

aislados o grupos de árboles dentro de superficies que no presenten características de bosque continuo.

200.2 Materiales

Los materiales obtenidos como resultado de la ejecución de los trabajos de desmonte y limpieza, se deben disponer de acuerdo con lo establecido en el numeral 200.4.4.

200.3 Equipo

El equipo empleado para llevar a cabo los trabajos de desmonte y limpieza debe ser compatible con los procedimientos de ejecución adoptados y requiere la aprobación previa del interventor, teniendo en cuenta que su capacidad y su eficiencia se ajusten al programa de ejecución de los trabajos y al cumplimiento de las exigencias de esta especificación.

200.4 Ejecución de los trabajos

200.4.1 Desmonte y limpieza

Los trabajos de desmonte y limpieza se deben efectuar en todas las zonas señaladas en los planos o indicadas por la interventoría y de acuerdo con procedimientos aprobados por esta, tomando las precauciones necesarias para lograr unas condiciones de seguridad satisfactorias. Salvo que los documentos del proyecto indiquen algo diferente, dichas zonas deben abarcar, como mínimo, los límites indicados en la Tabla 200 – 1.

Tabla 200 - 1. Límite de áreas para desmonte y limpieza

Tipo de zona	Límite área Hasta un metro (1 m) más, afuera del pie del terraplén.				
Áreas de fundación de terraplenes.					
Áreas de excavación.	Hasta un metro (1 m) más, afuera de los bordes superio- res.				
Fajas de emplazamiento de canales, zanjas y otras obras de drenaje.	Hasta cero coma cincuenta metros (0,50 m) más, afuera de las líneas de borde.				
Áreas de excavación para fundaciones de estructuras.	Hasta un metro (1 m) más, afuera de las líneas de excavación.				
Áreas de emplazamiento de las cercas que delimitan la faja de derecho de vía.	En un metro (1 m) de ancho.				
Áreas de cauce de escurrimientos naturales.	Toda el área dentro de los límites definidos por el proyecto.				
Áreas de cruce de cultivos y plantaciones agrícolas.	Toda el área delimitada por los cercos.				

No se debe permitir el procedimiento de desmonte mediante quema, así sea controlada. Tampoco se debe admitir el uso de herbicidas, para ambos casos, sin previo permiso de la autoridad ambiental competente, con la aprobación de la interventoría. Para evitar daños en las propiedades adyacentes o en los árboles que

deban permanecer en su lugar, se debe procurar que los árboles a ser derribados caigan en el centro de la zona objeto de limpieza, troceándolos por su copa y tronco progresivamente, cuando así lo exija el interventor. Las ramas de los árboles que se extiendan sobre el área que, según el proyecto, vaya a estar ocupada por la corona de la vía, deben ser cortadas o podadas para dejar un claro mínimo de seis metros (6 m), a partir del borde de la superficie de esta.

Para el inicio de la actividad, debe efectuarse una visita previa. Esta visita de inspección se debe realizar por el especialista ambiental tanto del contratista como del interventor, así como los directores de la obra; de ella, se debe generar un acta en la que deben quedar consignados los lineamientos de equipo, del personal y de la ejecución.

200.4.2 Remoción de tocones y raíces

En aquellas áreas donde se deban efectuar trabajos de excavación, todos los troncos, raíces y otros materiales inconvenientes, deben ser removidos hasta una profundidad no menor de sesenta centímetros (60 cm), contados desde la superficie de la subrasante del proyecto. En las áreas que vayan a servir de base de terraplenes o estructuras de contención o drenaje, los tocones, raíces de más de diez centímetros (10 cm) de diámetro y demás materiales inconvenientes, se deben eliminar hasta una profundidad no menor de treinta centímetros (30 cm) por debajo de la superficie que se deba descubrir de acuerdo con las necesidades del proyecto; además de las medidas que el interventor avale con base en los métodos de demolición adoptados y teniendo en cuenta las disposiciones ambientales descritas en el artículo 106. Todos los troncos que estén en la zona del proyecto, pero por fuera de las áreas de excavación, terraplenes o estructuras, se pueden cortar a ras del suelo. Igualmente, las oquedades, huecos o vacíos causados por la extracción de tocones y raíces, se deben rellenar con el suelo que haya quedado al descubierto al hacer la limpieza y, para su conformación, se debe apisonar hasta obtener un grado de compactación similar al del terreno adyacente y la superficie se debe ajustar a la del terreno circundante.

200.4.3 Descapote

El volumen de la capa vegetal que se remueva al efectuar el desmonte y la limpieza no debe incluirse dentro del trabajo objeto del presente artículo. Dicho trabajo se encuentra cubierto por el artículo 210, Excavación de la explanación, canales y préstamos. 200.4.4 Remoción y disposición de materiales Los árboles talados que sean susceptibles de aprovechamiento, deben ser despojados de sus ramas y cortados en trozos de tamaño conveniente, los cuales deben ser apilados debidamente a lo largo de la zona de derecho de vía, disponiéndose posteriormente según lo apruebe el interventor. El resto de los materiales provenientes del desmonte y la limpieza debe ser retirado del lugar de los trabajos, transportado y depositado en los lugares establecidos en los documentos del proyecto o señalados por el interventor, donde dichos materiales deben ser enterrados convenientemente,

extendiéndolos en capas dispuestas de forma que se reduzca al mínimo la formación de huecos. Cada capa se debe cubrir o mezclar con suelo para rellenar los posibles huecos y, sobre la capa superior, extender al menos treinta centímetros (30 cm) de suelo compactado adecuadamente, de tal manera que la acción de los elementos naturales no pueda dejarlos al descubierto. Estos materiales no se deben extender en zonas donde se prevean afluencias apreciables de agua. El trabajo de trasplante de especies vegetales que deban ser conservadas (que incluye remoción, traslado y plantación en otro sitio) está cubierto por el artículo 203, Trasplante de árboles.

200.4.5 Orden de las operaciones

Los trabajos de desmonte y limpieza se deben efectuar con anterioridad al inicio de las operaciones de explanación. En cuanto dichos trabajos lo permitan, y antes de disturbar con maquinaria la capa vegetal, se deben levantar secciones transversales del terreno original, las cuales deben servir para determinar los volúmenes de la capa vegetal y del movimiento de tierra. Si después de ejecutados el desmonte y la limpieza, la vegetación vuelve a crecer por motivos imputables al constructor, este debe efectuar una nueva limpieza, sin costo adicional para el Instituto Nacional de Vías (INVÍAS), antes de realizar la operación constructiva subsiguiente.

200.4.6 Limitaciones de ejecución

Los trabajos deben ser realizados en condiciones de luz solar.

200.4.7 Manejo ambiental

En adición a los aspectos generales indicados en el artículo 106, de estas especificaciones, todas las labores requeridas para el desmonte y limpieza se deben realizar con base en lo establecido en los estudios y evaluaciones ambientales del proyecto, lo mismo que en las normas y disposiciones vigentes sobre conservación del ambiente, los recursos naturales y protección de la comunidad. Cuando la autoridad competente lo permita, la materia vegetal inservible y los demás desechos del desmonte y limpieza, se pueden quemar en un momento oportuno y con los controles adecuados para prevenir la propagación del fuego. El constructor es el responsable tanto de obtener el permiso para la quema, como de cualquier conflagración que resulte de dicho proceso. Por ningún motivo se debe permitir que los materiales de desecho se incorporen en la construcción de los terraplenes, ni disponerlos a la vista en las zonas o fajas laterales reservadas para la vía, ni en sitios donde puedan ocasionar perjuicios ambientales. Queda prohibida la comercialización de la madera producto de la tala y/o entregarla a terceros que la comercialicen. Tampoco se debe permitir el uso de explosivos para remover la vegetación. Se sugiere que para el lleno de oquedades se utilicen compuestos orgánicos (naturales). Se insinúa, también, evitar el uso de insecticidas, por cuanto son compuestos químicos que pueden afectar a nivel ambiental, como efectos en la flora, fauna, el suelo, el sistema hídrico y la atmósfera. En caso de uso de agua

lluvia, se recomienda que el pH sea normal entre cinco y cinco coma cinco (5-5,5); asimismo, se debe revisar que el material de relleno implementado en la actividad sea biodegradable y cumpla con el Análisis del Ciclo de Vida (ACV).

200.5 Condiciones para el recibo de los trabajos

200.5.1 Controles

Durante la ejecución de los trabajos, principalmente, se deben adelantar los siguientes controles:

- Verificar que el constructor disponga de todos los permisos requeridos.
- Comprobar el estado y funcionamiento del equipo empleado en la ejecución de los trabajos.
- Confirmar la eficiencia y seguridad de los procedimientos de ejecución de los trabajos.
- Vigilar el cumplimiento de los programas de trabajo.
- Comprobar que la disposición de los materiales obtenidos de los trabajos de desmonte y limpieza se ajuste a las exigencias de la presente especificación y todas las disposiciones legales vigentes.

El interventor, en conjunto con la autoridad ambiental si es requisito, deben establecer qué individuos (árboles) quedan en pie y deben ordenar cuáles deben ser talados; todo esto cumpliendo con lo establecido en el plan de manejo ambiental. El constructor debe aplicar las acciones y los procedimientos constructivos recomendados en los respectivos estudios o evaluaciones ambientales del proyecto y las disposiciones vigentes sobre la conservación del medio ambiente y los recursos naturales; por ello, el interventor debe vigilar su cumplimiento. El interventor se debe encargar de medir las áreas en las que se ejecuten los trabajos en acuerdo con esta especificación y el plan de calidad, medición y ensayo. El plan de calidad y el plan de inspección, medición y ensayo, son de obligatorio cumplimiento tal como se encuentra expresado en el numeral 103.2 del artículo 103, Responsabilidades especiales del constructor.

200.5.2 Condiciones específicas para el recibo y tolerancias

La actividad de desmonte y limpieza se debe considerar terminada cuando la zona quede despejada, de tal manera que permita continuar con las siguientes actividades de la construcción. Para efectos de medida y pago, el interventor únicamente debe controlar las zonas donde el desmonte y la limpieza se realicen en una longitud no mayor de un kilómetro (1 km) adelante del frente de la explanación. Para evitar incurrir en "causal de procedimiento sancionatorio ambiental", en ningún caso, la implementación del desmonte descapote y limpieza puede superar el área prevista para ello.

200.6 Medida

La unidad de medida del área desmontada y limpiada debe ser la hectárea (ha), en su proyección horizontal, aproximada al décimo de hectárea. Para pequeñas zonas como bordes de vía, se recomienda que la unidad de medida sea el 2 metro cuadrado (m). El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

No se deben medir, para pago, las áreas correspondientes a:

- Calzadas de vías existentes.
- Áreas desmontadas y limpiadas en zonas de préstamos o de canteras y otras fuentes de materiales que se encuentren localizadas fuera de la zona del proyecto.
- Áreas que el constructor haya despejado por conveniencia propia, tales como vías de acceso, vías para acarreos, campamentos, instalaciones o depósitos de materiales.

200.7 Forma de pago

El pago del desmonte y limpieza se debe hacer al respectivo precio unitario del contrato, por todo trabajo ejecutado de acuerdo con esta por el interventor. El precio debe cubrir todos los costos de desmontar, destroncar, desraizar, rellenar y compactar los huecos de tocones y disponer los materiales sobrantes de manera uniforme en los sitios aprobados por el interventor. El precio unitario debe cubrir, además, el cargue, transporte y descargue y debida disposición de estos materiales, así como la mano de obra, herramientas, equipo necesario para la ejecución de los trabajos y la obtención de todos los permisos requeridos. El precio unitario también debe incluir los costos de administración e imprevistos y la utilidad del constructor. El pago por concepto de desmonte y limpieza se debe hacer independientemente del correspondiente a la excavación o el descapote en los mismos sitios, aunque los dos (2) trabajos se ejecuten en una (1) sola operación. El descapote y la excavación se deben medir y pagar de acuerdo con el artículo 210. Por su parte, el pago de trasplante de especies vegetales que deban ser conservadas (que incluye remoción, traslado y plantación en otro sitio), debe estar cubierto por el artículo 203.

200.8 Ítem de pago

Ítem	Descripción	Unidad		
200.1	Desmonte y limpieza en bosque	Hectárea (ha)		
200.1	Desmonte y limpieza en bosque	Metro cuadrado (m²)		
200.2	Desmonte y limpieza en zonas no boscosas	Hectárea (ha)		
200.2	Desmonte y limpieza en zonas no boscosas	Metro cuadrado (m²)		

1.2. EXCAVACIONES VARIAS SIN CLASIFICAR, INCLUYE RETIRO.

600.1 descripción

600.1.1 Generalidades

Este trabajo consiste en la excavación necesaria para las fundaciones de las estructuras a las cuales se refiere el presente Artículo, de acuerdo con los alineamientos, pendientes y cotas indicadas en los planos u ordenados por el Interventor. Comprende, además, la construcción de sistemas de apuntalamientos y entibados, encofrados, ataguías y cajones y el sistema de drenaje que fuere necesario para la ejecución de los trabajos de excavación, así como el retiro subsiguiente de encofrados y ataguías. Incluye, también, la remoción, el transporte y la disposición de todo material que se encuentre dentro de los límites de las excavaciones y la limpieza final que sea necesaria para la terminación del trabajo.

No se incluyen en este artículo las excavaciones producidas para cualquiera de las estructuras consideradas en artículos específicos dentro de las presentes especificaciones, salvo que las mismas hagan referencia a este.

600.1.2Clasificación

66.1.2.1Excavaciones varias sin clasificar

Se refiere a los trabajos de excavaciones varias de cualquier material, sin importar su naturaleza ni la presencia de la tabla de agua o nivel freático.

600.1.2.2 Excavaciones varias clasificadas

600.1.2.2.1 Excavaciones varias en roca en seco

Comprenden la excavación del mismo tipo de material descrito en el numeral 210.1.3.2.1. del artículo 210, Excavación de la explanación, canales y préstamos.

600.1.2.2.2. Excavaciones varias en roca bajo agua

Incluyen toda excavación cubierta por el numeral anterior, donde la presencia permanente de agua sobre el nivel de la excavación dificulte su ejecución.

600.1.2.2.3 Excavaciones varias en material común en seco

Comprenden la excavación, en seco, de materiales no cubiertos por el numeral 600.1.2.2.1, "Excavaciones varias en roca en seco".

600.1.2.2.4 Excavaciones varias en material común bajo agua

Comprenden toda excavación de los materiales considerados en el numeral anterior, pero donde la presencia permanente de agua sobre el nivel de la excavación dificulte la ejecución de ésta.

600.2 MATERIALES

Los materiales provenientes de las excavaciones varias que sean adecuados y necesarios para la ejecución de rellenos, deberán ser almacenados por el Constructor para aprovecharlos en la construcción de aquellos, según lo determine el Interventor. Dichos materiales no se podrán desechar ni retirar de la zona de la obra para fines distintos a los definidos en los documentos del Contrato, sin la aprobación previa del Interventor.

Los materiales de las excavaciones varias que no sean utilizables, deberán ser dispuestos de acuerdo con lo que establezcan los documentos del proyecto y las instrucciones del Interventor, en zonas de disposición o desecho aprobadas ambientalmente.

600.3 EQUIPO

El Constructor propondrá, para consideración del Interventor, los equipos más apropiados para las operaciones por realizar, de acuerdo con el tipo de material por excavar, los cuales no deberán producir daños innecesarios en vecindades o en la zona de los trabajos; y deberán garantizar el avance físico según el programa de trabajo, permitiendo el correcto desarrollo de las etapas constructivas siguientes.

600.4 EJECUCIÓN DE LOS TRABAJOS

600.4.1 Generalidades

El Constructor deberá notificar al Interventor, con suficiente antelación al comienzo de cualquier excavación, para que se efectúen todas las medidas y levantamientos topográficos necesarios y se fije la localización de la estructura en el terreno original, según el tipo de estructura de que se trate.

Antes de comenzar los trabajos de excavación, se deberán haber completado los trabajos previos de desmonte y limpieza, de conformidad con lo que resulte aplicable de lo especificado en el Artículo 200 de las presentes especificaciones.

Si dentro de los límites de la excavación se encuentran estructuras, cimientos antiguos u otros obstáculos, éstos deberán ser retirados por el Constructor, quien no tendrá derecho a compensación adicional por las dificultades o contratiempos que ocasione la remoción y/o retiro de tales obstrucciones.

Siempre que los trabajos lo requieran, las excavaciones varias deberán comprender labores previas, tales como el desvío de corrientes de agua o la construcción de cauces provisionales u otras que contemplen los planos del proyecto o indique el Interventor.

Los bordes exteriores de las excavaciones deberán delimitarse perfectamente, mediante estacas, jalones y líneas de demarcación de sus contornos. En las proximidades de toda excavación destinada a fundar estructuras o instalar alcantarillas, se colocará a lo menos una estaca de referencia altimétrica. Será de responsabilidad del Constructor conservar en todo momento la estaca de referencia altimétrica hasta la recepción de los trabajos; el Interventor, podrá ordenar la paralización de las excavaciones que no cuenten con esas referencias.

Las excavaciones se deberán adelantar de acuerdo con los planos de construcción. Las cotas de fundación de zapatas indicadas en ellos se consideran aproximadas y, por lo tanto, el Interventor podrá ordenar que se efectúen todos los cambios que considere necesarios en las dimensiones de la excavación, para obtener una cimentación satisfactoria.

El Constructor deberá tomar todas las precauciones para que la perturbación del suelo contiguo a la excavación sea mínima.

En caso de que, al llegar a las cotas de cimentación indicadas en los planos, el material sea inapropiado, el Interventor podrá ordenar una excavación a mayor profundidad a efectos de obtener un material de fundación apropiado o, alternativamente, a excavar a mayor profundidad y rellenar con un material que cumpla requisitos de los denominados adecuados o seleccionados, de acuerdo con el numeral 220.2.1 del Artículo 220, o según lo indiquen los documentos del proyecto.

En el primer caso, se deberá revisar los diseños de la estructura y efectuar las modificaciones que corresponda. En el segundo caso, el material de relleno será

tratado conforme lo establece el Artículo 610, "Rellenos para estructuras", de estas especificaciones.

En ambos casos, el Interventor definirá las cotas hasta las cuales se deberá profundizar la excavación.

Para las excavaciones en roca, los procedimientos, tipos y cantidades de explosivos que el Constructor proponga utilizar, deberán contar con la aprobación previa del Interventor, así como la disposición y secuencia de las voladuras, las cuales se deberán proyectar de manera que su efecto sea mínimo por fuera de los taludes proyectados. En la dirección y la ejecución de estos trabajos se deberá emplear personal que tenga amplia experiencia al respecto.

Toda excavación que presente peligro de derrumbes que afecten el ritmo de los trabajos, la seguridad del personal o la estabilidad de las obras o propiedades adyacentes, deberá entibarse de manera satisfactoria para el Interventor. Los entibados deberán ser retirados antes de rellenar las excavaciones.

Si los sistemas de gravedad no son suficientes para mantener drenadas las excavaciones, se deberán instalar operando motobombas, mangueras, conductos deslizantes y todos los dispositivos necesarios que permitan mantener el agua a un nivel inferior al del fondo de las obras permanentes. Durante el bombeo, se deberá tener la precaución de no producir socavaciones en partes de las obras o alterar las propiedades de los suelos.

Cualquier daño o perjuicio causado por el desarrollo de los trabajos, en la obra o en propiedades adyacentes, será responsabilidad del Constructor quien deberá reponer, sin costo adicional para el Instituto Nacional de Vías, los daños y perjuicios causados, a plena satisfacción del Interventor.

600.4.2 Excavaciones para cimentaciones de estructuras de concreto

600.4.2.1 Excavación

Los lugares para cimentaciones se deberán excavar conforme las líneas de pago indicadas en los planos u ordenadas por el Interventor, para permitir la construcción de las mismas a todo su ancho y longitud y dejando un fondo con una superficie plana y horizontal.

Cuando la cimentación se encuentra sobre una superficie excavada que no sea roca, el Constructor deberá tener especial cuidado para no perturbar el fondo de la excavación, tomando la precaución adicional de no remover el material del fondo de la excavación, en mínimo veinte centímetros (20 cm) (o lo que autorice el

Interventor), hasta la cota de cimentación prevista, sino en el instante en que se esté por colocar el cimiento.

En las excavaciones de las fundaciones de estructuras en cajón y pilas, el Constructor podrá adoptar el sistema constructivo que estime conveniente, siempre y cuando cuente con la aprobación del Interventor. Podrá facilitar el procedimiento constructivo con el empleo de islas, plataformas, sistemas neumáticos, aire comprimido, lanzas de agua, equipos de alto rendimiento de origen minero, y cualquier otro sistema autorizado. El empleo de cualquiera de estos sistemas constructivos derivados de las dificultades de la ejecución de obra, no implicará ningún pago adicional al pactado para el precio unitario establecido en esta especificación.

Cuando se encuentre un fondo rocoso, la excavación se deberá ejecutar de tal forma, que la roca sólida quede expuesta y preparada en lechos horizontales o dentados para recibir el concreto, debiendo ser removidos todos los fragmentos de roca suelta o desintegrada, así como los estratos muy delgados. Las grietas y cavidades que queden expuestas, deberán ser limpiadas y rellenadas con concreto o mortero.

Cuando se usen pilotes para soportar zapatas de estribos o pilas de puentes o viaductos, la excavación de cada fondo se deberá completar antes de iniciar la hinca y ésta deberá finalizar antes de comenzar la fundición de la zapata que se trate. Al terminar la hinca de los pilotes, el Constructor deberá retirar todo el material suelto o desplazado, con el fin de que quede un lecho plano y sólido para recibir el concreto.

600.4.2.2 Ataguías y encofrados

Las ataguías y encofrados que se conformen para la protección de las excavaciones donde se van a construir los cimientos, se deberán llevar a profundidades y alturas apropiadas para que sean seguras y tan impermeables como sea posible, para realizar adecuadamente el trabajo por ejecutar dentro de ellas. Las dimensiones internas de las ataguías y encofrados deberán dejar espacio suficiente para la construcción de formaletas y la inspección de sus partes externas, así como para permitir el bombeo por fuera de aquellos.

Las ataguías y encofrados deberán ser construidos en tal forma, que protejan el concreto fresco contra cualquier daño que pudiera ocasionarle una creciente repentina y para prevenir cualquier daño debido a la erosión. En las ataguías y encofrados no se deberán dejar maderos o abrazaderas que puedan penetrar en el concreto del cimiento, salvo que el Interventor lo autorice por escrito.

No se permitirá ningún apuntalamiento de ataguías y encofrados que pueda producir esfuerzo, golpe o vibración en la estructura permanente.

Las ataguías y encofrados inclinados o desplazados lateralmente durante el proceso de hincado, deberán ser enderezados, relocalizados o suplementados para obtener el espacio necesario y el lugar apropiado para la cimentación de la estructura.

Al terminar el trabajo de que se trate, el Constructor deberá desmontar y retirar la obra falsa, de tal manera que no ocasione ningún daño al cimiento terminado.

600.4.2.3 Sello de concreto

Cuando, a juicio del Interventor, ocurran circunstancias que no permitan fundir el cimiento en seco, podrá exigir la construcción de un sello de concreto de las dimensiones que sean necesarias. El concreto se deberá cumplir con lo especificado en el Artículo 630 y deberá tener una resistencia mínima a la compresión de 21 MPa a 28 días.

Después de colocado el sello, el agua se extraerá por bombeo, continuándose la ejecución del trabajo en seco.

Cuando se utilicen encofrados de peso considerable con el fin de compensar parcialmente la presión hidrostática que actúa contra la base del sello de concreto, se deberán proveer anclajes especiales, tales como espigos o llaves, para transferir el peso total del encofrado a dicho sello.

Cuando el agua esté sujeta a mareas o corrientes, las paredes del encofrado se deberán perforar a la altura de la marea más baja, para controlar y obtener igual presión hidrostática dentro y fuera del elemento, durante la fundida y el fraguado de los sellos.

600.4.2.4 Conservación de los cauces

A menos que una especificación particular indique algo diferente, no se permitirá ninguna excavación por fuera de los cajones, ataguías, encofrados o tablestacados, ni alterar el lecho natural de las corrientes adyacentes a la estructura, sin el consentimiento del Interventor.

Si se efectúa cualquier excavación o dragado en el sitio de la estructura antes de colocar los casos, encofrados, ataguías o tablestacados, el Constructor deberá rellenar la zona excavada o dragada, sin costo adicional para el Instituto Nacional de Vías, una vez colocada la cimentación, hasta la altura natural del terreno aprobado por el Interventor. del río, con material

En cursos de agua navegables, el Constructor deberá mantener, en todo momento, la profundidad del agua y los gálibos requeridos para el paso del tránsito lacustre o fluvial. También, deberá mantener luces y señales adecuadas durante todo el período de construcción.

Los materiales provenientes de las excavaciones de cimientos o rellenos de ataguías que se depositen en la zona de la corriente de agua, deberán ser retirados por el Constructor, dejando el lecho de la corriente en las mismas condiciones en que se encontraba originalmente.

600.4.3 Excavaciones para alcantarillas

Las excavaciones para alcantarillas se deberán efectuar de conformidad con el alineamiento, dimensiones, pendientes y detalles mostrados en los planos del proyecto y las instrucciones del Interventor.

Cuando se vaya a colocar una alcantarilla por debajo de la línea del terreno original, se deberá excavar una zanja a la profundidad requerida, de acuerdo a los Artículos 660, 661, 662 o 663, según corresponda, conformándose el fondo de la misma de manera que asegure un lecho firme en toda la longitud de la alcantarilla. El ancho de dicha zanja deberá ser el mínimo que permita trabajar a ambos lados de la alcantarilla y compactar debidamente el relleno debajo y alrededor de ella. Las paredes de la zanja deberán quedar lo más verticales que sea posible, desde la cimentación hasta, por lo menos, la clave de la alcantarilla.

necesario que permita trabajar a ambos lados de la alcantarilla y compactar adecuadamente el relleno alrededor de ella. Dicho valor está dado en función del material de fabricación de la tubería según lo establecido en la Tabla 600 - 1, y no debe ser menor de cero coma setenta metros (0,70 m).

Material de la tubería	Ancho de zanja (m)		
Acero	1,50*DE+0,20 (Nota)		
CCP y concreto	DE+0,50		
Glass Fiber Reinforced Plastic Pipe (GRP)	1,25*DE +0,30		
Hierro dúctil (HD)	DE+0,60		
Policloruro de vinilo (PVC)	DE+0.40		

Tabla 600 - 1. Anchos de zanja para tuberías en función del material de fabricación

Nota: DE corresponde al diámetro exterior de la tubería.

En el caso de que no se haya definido en el estudio geotécnico, la excavación se puede realizar con paredes verticales sin ayuda de apuntalamientos, hasta una profundidad máxima, dada por el menor valor obtenido de las siguientes condiciones:

- El valor de la altura crítica (H), como se c encuentra definido en el "Manual de cimentaciones superficiales y profundas para carreteras" de INVÍAS (versión 2012).
- Un valor de uno coma cinco metros (1,5 m). El proceso de cálculo y valor obtenido debe ser aprobado por el interventor.

En caso de que la profundidad de excavación sea mayor de uno coma cinco metros (1,5 m), se deben requerir sistemas de protección ante el cierre accidental. El constructor debe presentar una alternativa técnica ante esta situación, así como los respectivos diseños y memorias de cálculo.

Cuando se encuentre roca, ya sea en estratos o en forma suelta, o cualquier otro material que por su dureza no permita conformar un lecho apropiado para colocar la tubería, dicho material debe ser removido hasta más abajo de la cota de cimentación y debe ser reemplazado por un material de subbase granular compactado, en un espesor mínimo de quince centímetros (15 cm). Esta capa se debe compactar, mínimo al noventa por ciento (90%) de la densidad máxima obtenida en el ensayo modificado de compactación (norma de ensayo INV E-142), teniendo en cuenta la corrección por presencia de partículas gruesas (norma de ensayo INV E-143), siempre que ella resulte necesaria.

Cuando se presenten materiales suaves, esponjosos o inestables que no permitan una base firme para la cimentación de la alcantarilla, dichos materiales deben ser removidos en una profundidad igual al ancho de la excavación o la que autorice el interventor, debiendo rellenarse posteriormente con un material adecuado, según el numeral 220.2.1 del artículo 220 o de acuerdo con lo indicado en los documentos del proyecto, el cual debe ser compactado, como mínimo, al noventa por ciento (90 %) de la densidad seca máxima obtenida a partir del procedimiento descrito en la norma INV E-142, teniendo en cuenta la corrección por presencia de partículas gruesas que se explica en la norma INV E-143, en caso se requiera.

600.4.4 Excavaciones para filtros

Las excavaciones para la construcción de filtros se deberán efectuar hasta la profundidad que se requiera y de conformidad con las dimensiones, pendientes y detalles que indiquen los planos del proyecto o determine el Interventor. Las paredes de las excavaciones deberán ser verticales y su fondo deberá ser conformado, a efecto de que quede una superficie firme y uniforme en toda su longitud.

600.4.5 Excavaciones para gaviones, muros de contención de suelo reforzado con geotextil, descoles y zanjas

Las excavaciones para la fundación de gaviones y muros de contención de suelo reforzado con geotextil, así como las necesarias para la construcción de descoles, zanjas y obras similares, se deberán realizar de conformidad con las dimensiones y detalles señalados en los planos o determinados por el Interventor.

600.4.6 Bombeo

En cualquier excavación que lo requiera, el bombeo se deberá hacer de manera que excluya la posibilidad de arrastrar cualquier porción de los materiales colocados. No se permitirá bombear agua durante la colocación del concreto o durante las veinticuatro (24) horas siguientes, salvo que el bombeo se pueda efectuar desde un sumidero apropiado, separado de la obra de concreto por un muro impermeable u otros medios efectivos.

No se deberá iniciar el bombeo para drenar una ataguía o un encofrado sellado, hasta tanto el sello haya fraguado suficientemente para resistir la presión hidrostática y, en ningún caso, antes de siete (7) días o el lapso adicional que autorice el Interventor.

600.4.7 Limpieza final

Al terminar los trabajos de excavación el Constructor deberá limpiar y conformar las zonas laterales de la misma y las de disposición de sobrantes, de acuerdo con lo que establezca el plan ambiental y las indicaciones del Interventor.

600.4.8 Limitaciones en la ejecución

Las excavaciones varias sólo se llevarán a cabo cuando no haya lluvia o fundados temores de que ella ocurra y la temperatura ambiente, a la sombra, no sea inferior a dos grados Celsius (2° C).

Los trabajos de excavaciones se deberán realizar en condiciones de luz solar. Sin embargo, cuando se requiera terminar el proyecto en un tiempo especificado por el INVÍAS o se deban evitar horas pico de tránsito público, el Interventor podrá autorizar el trabajo en horas de oscuridad, siempre y cuando el Constructor garantice el suministro y la operación de un equipo de iluminación artificial que resulte satisfactorio para aquel. Si el Constructor no ofrece esta garantía, no se le permitirá el trabajo nocturno y deberá poner a disposición de la obra el equipo y el personal adicionales para completar el trabajo en el tiempo especificado, operando únicamente durante las horas de luz solar.

600.4.9 Manejo ambiental y otras consideraciones

Todas las labores de excavaciones varias se realizarán teniendo en cuenta lo establecido en los estudios o evaluaciones ambientales del proyecto y las disposiciones vigentes sobre la conservación del medio ambiente y de los recursos naturales.

Los desvíos provisionales de los cursos de agua no podrán dar lugar a modificaciones permanentes en los lechos de quebradas y ríos. Así mismo, se deberá evitar el represamiento y el empacamiento de agua que puedan originar áreas insalubres causantes de la proliferación de mosquitos y otras plagas.

Todos los materiales removidos de las excavaciones y que no tengan uso previsto en la obra deberán ser cuidadosamente recuperados para evitar que puedan ser arrastrados a cursos de agua, y serán transportados y depositados en lugares apropiados, de la manera prevista en los documentos del proyecto u ordenada por el Interventor.

En cuanto a hallazgos arqueológicos, paleontológicos y de minerales de interés comercial o científico, se seguirá lo dispuesto en el numeral 210.4.6 del Artículo 210.

600.5 CONDICIONES PARA EL RECIBO DE LOS TRABAJOS

600.5.1 Controles

El plan de calidad y el plan de inspección, medición y ensayo, son de obligatorio cumplimiento tal como se encuentra expresado en el numeral 103.2 del artículo 103, Responsabilidades especiales del constructor.

Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales:

- Comprobar el estado del equipo de construcción.
- Verificar la eficiencia y la seguridad de los procedimientos de construcción.
- Constatar el cumplimiento de las disposiciones existentes en el artículo 102, Aspectos generales de seguridad y salud.
- Vigilar el cumplimiento del programa de trabajo.
- Confirmar el cumplimiento de las normas ambientales aplicables.
- Verificar el alineamiento, el perfil y las secciones de las áreas excavadas.
- Comprobar la lisura del fondo de la excavación mediante lo establecido en el numeral 600.5.2, y considerando que la diferencia de pendiente existente entre dos (2) puntos de control consecutivos con relación a la contemplada en los documentos del proyecto no exceda de cero coma cinco por ciento (0,5 %).

- Comprobar la firmeza del fondo de las excavaciones, según los valores de compactación definidos en los documentos del proyecto a ejecutar o en el presente artículo.
- Medir los volúmenes de trabajo realizado conforme a la presente especificación.

El interventor debe constatar que el constructor disponga de todos los permisos requeridos para la ejecución de los trabajos.

600.5.2 Condiciones específicas para el recibo y tolerancias

El trabajo se debe dar por terminado cuando el alineamiento, el perfil y la sección de la excavación estén de acuerdo con los documentos del proyecto y la aprobación del interventor y este considere, además, que la conservación de cauces es satisfactoria.

En ningún punto, la excavación realizada puede variar respecto de la autorizada por el interventor en más de tres centímetros (3 cm) en cota, ni en más de cinco centímetros (5 cm) en la localización en planta.

Todas las deficiencias que excedan las tole-rancias mencionadas deben ser corregidas por el constructor, sin costo adicional para INVÍAS, hasta conseguir la aprobación por parte del interventor.

MEDIDA

La unidad de medida de las excavaciones varias será el metro cúbico (m3), aproximado a la décima de metro cúbico, de material excavado en su posición original, determinado dentro y hasta las líneas de pago indicadas en los planos y en esta especificación o autorizadas por el Interventor. El resultado de la medida se deberá reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

No debe haber ninguna medida por los sobreanchos que se requieran para colocar encofrados, ni por el material que se haya excavado antes de haber realizado los levantamientos topográficos mencionados en el numeral 600.4.1.

Todas las excavaciones deben ser medidas por volumen ejecutado, verificado antes y después de llevarse a cabo el trabajo de excavación. El constructor debe permitir que el interventor realice las mediciones y verificaciones que considere pertinentes antes de cerrar la excavación. Si el constructor cierra la excavación antes de que el

interventor realice las mediciones y verificaciones, se entiende que se aviene a lo que unilateralmente este determine.

En excavaciones para estructuras, alcantarillas y filtros, toda medida se debe hacer con base en caras verticales a partir de los bordes autorizados de la excavación. Las excavaciones efectuadas por fuera de estos límites y los volúmenes adicionales causados por facilidad constructiva, desprendimientos, derrumbes, hundimientos, sedimentaciones o rellenos debidos a causas naturales, descuido o negligencia del constructor, no se deben medir y su corrección debe correr por cuenta exclusiva de este, hasta conseguir la aprobación por parte del interventor.

En caso de ocurrir derrumbes que el interventor no atribuya a descuido o negligencia del constructor, se deben medir, para efectos de pago, conforme con lo establecido en el artículo 211, Remoción de derrumbes.

La medida de la excavación para la fundación de gaviones, muros de contención de suelo reforzado con geotextil, así como para la ejecución de descoles, zanjas y similares, se debe hacer con base en secciones transversa-les, tomadas antes y después de realizar el trabajo respectivo. No se debe incluir en la medida las excavaciones ejecutadas por fuera de las líneas definidas en el proyecto o autorizadas por el interventor.

FORMA DE PAGO

El trabajo de excavaciones varias se pagará al precio unitario del contrato, por toda obra ejecutada de acuerdo con el proyecto, la presente especificación y las instrucciones del Interventor, para la respectiva clase de excavación, ejecutada satisfactoriamente y aceptada por éste.

El precio unitario deberá cubrir todos los costos por concepto de la excavación, eventual perforación y voladura, remoción, cargue, transporte y descargue de todos los materiales excavados en las zonas de utilización o desecho, así como su correcta disposición en estas últimas. También, deberá cubrir los costos de todas las obras provisionales y complementarias, tales como la construcción de accesos, desvíos de corrientes de agua, construcción de cauces provisionales, trabajos de conservación de cauces; ataguías, encofrados, casos, tablestacados, andamios, entibados y desagües; y los equipos, bombeos, transportes, mano de obra, explosivos, limpieza final de la zona de construcción y, en general, todo costo relacionado con la correcta ejecución de los trabajos especificados.

El Constructor deberá considerar, en relación con los explosivos, todos los costos que implican su adquisición, transporte, escoltas, almacenamiento, vigilancia, manejo y control hasta el sitio de utilización.

Si el material excavado es roca, el precio unitario deberá cubrir su eventual almacenamiento para uso posterior, en las cantidades señaladas por el Interventor. De los volúmenes de excavación se descontarán, para fines de pago, aquellos que se empleen en la construcción de rellenos para estructuras, mampostería, muros de contención de suelo reforzado con geotextil, concretos, filtros, subbases, bases y capas de rodadura.

En el caso de que los trabajos afecten una vía en la cual exista tránsito automotor, el precio unitario deberá incluir, además, los costos de señalización preventiva de la vía y el control del tránsito durante la ejecución de los trabajos.

El precio unitario deberá incluir, también, los costos de administración, imprevistos y la utilidad del Constructor.

Los trabajos de desmonte y limpieza previos a la ejecución de las excavaciones, se medirán y pagarán de acuerdo con el Artículo 200, "Desmonte y limpieza".

El sello de concreto para la protección del fondo de la excavación, cuando se requiera, se medirá y pagará de acuerdo con el Artículo 630, "Concreto estructural".

ÍTEM DE PAGO

Opción 1: excavación sin clasificar

Ítem	Descripción	Unidad		
600.1.1	Excavaciones varias sin clasificar	Metro cúbico (m³)		

Opción 2: excavación clasificada

Ítem	Descripción	Unidad
600.2.1	Excavaciones varias en roca en seco	Metro cúbico (m³)
600.2.2	Excavaciones varias en roca bajo agua	Metro cúbico (m³)
600.2.3	Excavaciones varias en material común en seco	Metro cúbico (m³)
600.2.4	Excavaciones varias en material común bajo agua	Metro cúbico (m³)

Excavaciones varias sin clasificar, incluye retiro Metro cúbico (m3)

1.3. CONFORMACION DE LA CALZADA EXISTENTE

310. DESCRIPCIÓN

Este trabajo consiste en la escarificación, la conformación, la renivelación y la compactación del afirmado existente, con o sin adición de material de afirmado o de sub-base granular; así como la conformación o reconstrucción de cunetas.

310.2 MATERIALES

Se aprovecharán los materiales del afirmado existente que cumplan con los requisitos de calidad estipulados en el Artículo 311 para afirmados y en el Artículo 320 para sub- bases granulares.

En el caso de que sea necesaria la adición de nuevo material, éste deberá cumplir con los requisitos de calidad señalados en el Artículo 311 para afirmados o en el Artículo 320 para sub-bases, según los alcances del proyecto.

310.3 EQUIPO

Rige lo indicado en el numeral 300.3 del Artículo 300, "Disposiciones generales para la ejecución de afirmados, sub-bases y bases granulares y estabilizadas".

Normalmente, el equipo requerido para la conformación de la calzada incluye elementos para la explotación de materiales, eventualmente una planta de trituración, unidad clasificadora, equipos para mezclado, cargue, transporte, extensión, humedecimiento y compactación del material, así como herramientas menores.

310.4 EJECUCIÓN DE LOS TRABAJOS

310.4.1 Explotación de materiales y elaboración de agregados

Se aplica lo indicado en el numeral 300.4.1 del Artículo 300.

310.4.2 Mejoramiento del afirmado

Los materiales existentes que no cumplan con los requisitos de calidad establecidos en los Artículos 311 o 320, según corresponda, se escarificarán en el espesor ordenado por el Interventor, se retirarán, transportarán, depositarán y conformarán en los sitios destinados para disposición de sobrantes o desechos de acuerdo con estas especificaciones o lo dispuesto por el Interventor.

Cuando el material del afirmado existente cumpla con los requisitos de calidad establecidos en los Artículos 311 o 320, según corresponda, se deberá escarificar, conformar, humedecer o secar y compactar de acuerdo con lo especificado en esos

Artículos, ya sea con o sin adición de material. La escarificación del afirmado existente se realizará necesariamente cuando no se requiera adicionar material o cuando el espesor de la capa compacta de material por adicionar sea inferior a diez centímetros (10 cm).

Para el caso de capas adicionales con espesores compactados iguales o superiores a diez centímetros (10) sólo se realizará cuando haya necesidad de efectuar el reemplazo de material de afirmado existente que no cumpla con los requisitos de calidad establecidos en los Artículos 311 o 320, según corresponda salvo que, por circunstancias especiales, el Interventor determine lo contrario.

El material por utilizar en la adición o en el reemplazo de material inadecuado, deberá cumplir también lo especificado en los Artículos 311 o 320 para afirmados o sub-bases granulares, según lo indique el proyecto.

En el mejoramiento del afirmado no deberán aparecer depresiones ni angostamientos que afecten la superficie de rodadura contemplada en el alineamiento y en las secciones típicas del proyecto.

Una vez conformada la calzada existente, el Constructor deberá conservarla con la planicidad y el perfil correcto, hasta que proceda a la construcción de la capa superior. Cualquier deterioro que se produzca por causa diferente a fuerza mayor deberá ser corregido por el Constructor sin costo adicional para el Instituto Nacional de Vías, a plena satisfacción del Interventor.

310.4.3 Cunetas y ensanches

La conformación o reconstrucción de cunetas, así como la construcción de ensanches menores, se harán de acuerdo con las secciones, pendientes transversales y cotas indicadas en los planos o determinadas por el Interventor y con lo especificado en los artículos correspondientes a excavaciones y terraplenes.

Los procedimientos requeridos para cumplir las especificaciones deberán incluir la excavación, el cargue, el transporte y la disposición de los materiales no utilizables y la conformación de los materiales que sean utilizables, para obtener la sección típica proyectada.

El mejoramiento de cunetas y los ensanches deberán avanzar coordinadamente con la construcción de las demás obras del proyecto.

310.4.4 Manejo ambiental

Rige lo indicado en el numeral 300.4.8 del Artículo 300.

310.5 CONDICIONES PARA EL RECIBO DE LOS TRABAJOS

310.5.1 Controles

Se aplica todo lo que resulte pertinente del numeral 300.5.1 del Artículo 300.

310.5.2 Condiciones específicas para el recibo y tolerancias

Los trabajos de conformación de la calzada se deberán ajustar a los planos y secciones del proyecto y las instrucciones del Interventor. Su pendiente transversal deberá ser la especificada en el numeral 311.4.5 del Artículo 311, "Afirmado".

Las cunetas deberán quedar funcionando adecuadamente y libres de todo material de desecho.

En los casos en que se requiera adición de material, la verificación de su calidad se efectuará de acuerdo con lo establecido en el Artículo 311, "Afirmado", o en el Artículo 320, "Sub-base granular", según se haya incorporado material de afirmado o de sub-base granular, respectivamente.

El control de compactación se ajustará a lo establecido en el numeral 311.5.2.2.2 del Artículo 311, "Afirmado".

El trabajo se considerará terminado cuando el Interventor verifique y acepte que el Constructor se ha ceñido a lo establecido en los documentos y planos del proyecto y a lo ordenado por este.

130.6 MEDIDA

La unidad de medida para la conformación de la calzada, será el metro cuadrado (m2), aproximado al entero, de trabajo realizado de acuerdo con esta especificación y a satisfacción del Interventor en el área definida por éste.

El resultado de la medida se deberá reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

No se medirá, para efectos de pago, ningún área por fuera de los límites indicados en los documentos del proyecto o autorizados por el Interventor.

310.7 FORMA DE PAGO

El pago se hará al respectivo precio unitario del contrato por toda área de calzada conformada a plena satisfacción del Interventor.

El precio unitario deberá cubrir todos los costos de excavación de cunetas y ensanches menores en corte, hasta un máximo de cincuenta metros cúbicos (50

m3) entre estaciones de cincuenta metros(50 m) del abscisado del proyecto, excavados a un solo lado de la vía; el cargue, el transporte de los materiales excavados hasta los sitios de utilización y desecho; la escarificación, el cargue, el transporte y el desecho en sitios aprobados de los materiales inadecuados de la calzada existente; la escarificación, la conformación, el humedecimiento o el secamiento y la compactación de los materiales apropiados de la calzada existente, de acuerdo con las secciones típicas del proyecto, con o sin adición de material.

El precio unitario deberá incluir los costos de administración e imprevistos y la utilidad del Constructor.

Habrá pago por separado por excavaciones de volumen superior al señalado en el segundo párrafo de este numeral, los cuales se reconocerán de acuerdo con el Artículo 210," Excavación de la explanación, canales y préstamos", así como por el suministro, el transporte y la colocación de los materiales requeridos de afirmado y sub-base granular, los cuales se reconocerán de acuerdo con los Artículos 311, "Afirmado" y Artículo 320, "Sub-base granular".

ÍTEM DE PAGO

Ítem	Descripción	Unidad
210.1	Conformación de la	Metro
310.1	calzada existente	cuadrado (m²)

Conformación de la calzada existente Metro cuadrado (m2)

1.4. TRANSPORTE DE MATERIAL PRODUCTO DE LA EXCAVACIÓN

900.1 Descripción

Este trabajo estriba, única y exclusivamente, en el transporte de los materiales provenientes de la excavación de la explanación, canales y préstamos y el transporte de los materiales provenientes de derrumbes.

Esta especificación no es aplicable al transporte de líquidos, productos manufacturados, elementos industriales, ni al de agregados pétreos, mezclas asfálticas, materiales para la construcción de los pavimentos rígidos, obras de concreto hidráulico y de drenaje.

900.2 Materiales

900.2.1 Materiales provenientes de la excavación de la explanación, canales y préstamos

Hacen parte de este grupo los materiales provenientes de las excavaciones requeridas para la explanación, canales y préstamos, para su utilización o desecho, a que hace referencia el artículo 210, Excavación de la explanación, canales y préstamos, de las presentes especificaciones. Incluye, también, los materiales provenientes de la remoción de la capa vegetal o descapote otros materiales blandos, orgánicos y objetables, provenientes de las áreas en donde se vayan a realizar las excavaciones de la explanación, terraplenes y pedraplenes.

900.2.2 Materiales provenientes de derrumbes

Hacen parte de este grupo los materiales provenientes del desplazamiento de taludes o del terreno natural, depositados sobre una vía existente o en construcción, a que se refiere el artículo 211, Remoción de derrumbes, de las presentes especificaciones.

900.3 Equipo

Los vehículos para el transporte de materiales se encuentran sujetos a la aprobación del interventor y deben ser suficientes para garantizar el cumplimiento de las exigencias de esta especificación y del programa de trabajo. Deben estar provistos de los elementos necesarios para evitar contaminación o cualquier alteración perjudicial del material transportado y su caída sobre las vías empleadas para el transporte. Todos los vehículos para el transporte de materiales deben cumplir con las disposiciones legales vigentes referentes al control de la contaminación ambiental; para tal fin, deben garantizar que en sus contenedores se evite el derrame o pérdida del material transportado y, con tal fin, la estructura de sus contenedores debe encontrarse en condiciones óptimas para el almacenamiento de los materiales. Ningún vehículo de los utilizados por el constructor para el transporte de materiales provenientes de excavaciones y derrumbes por las vías de uso público, puede exceder las dimensiones y las cargas admisibles por eje y totales fijadas por las disposiciones legales vigentes al respecto.

900.4 Ejecución de los trabajos

900.4.1 Transporte de los materiales

La actividad de la presente especificación implica solamente el transporte de los materiales a los sitios de utilización o desecho, según corresponda, de acuerdo con el proyecto y las indicaciones del interventor, quien debe determinar cuál es el recorrido más corto y seguro para efectos de medida del trabajo realizado. La carga

no debe sobrepasar el nivel de enrase del contenedor y, las puertas del mismo, deben asegurarse para evitar la pérdida y/o derrame de material durante el transporte.

Para vías pavimentadas o conexiones con las mismas, debe implementarse un sistema para el lavado de las llantas de los vehículos utilizados en el transporte de material proveniente de excavaciones de las explanaciones, derrumbes, canales y préstamos, con el objeto de evitar el arrastre de material adherido a las llantas. En caso de no poderse implementar un sistema de lavado de las llantas de los vehículos, el constructor debe garantizar la limpieza de la calzada; además, debe cumplir con las normas legales vigentes para el manejo, transporte y disposición final de residuos y material sobrante de las actividades de construcción de carreteras. En este aspecto, el constructor debe tener presente la Resolución 472 de 2017 del Ministerio de Ambiente y Desarrollo Sostenible, en la cual se establecen las disposiciones para realizar la gestión integral de los Residuos de Construcción y Demolición (RCD) (o aquellas que las sustituyan, complementen o modifiquen). 900.4.2 Manejo ambiental Adicional a los temas generales indicados en el artículo 106, Aspectos ambientales, todas las labores requeridas para el transporte de materiales provenientes de excavaciones y derrumbes, deben realizarse en concordancia con lo establecido en las normas y disposiciones vigentes sobre la conservación del ambiente y los recursos naturales.

Por tanto, todas las actividades que se ejecuten en cumplimiento a esta especificación, deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas labores deben incluirse en los costos del proyecto; por tanto, no son objeto de reconocimiento directo en el contrato. En particular, debe prestarse atención al correcto funcionamiento del equipo de transporte en materia medioambiental y a la correcta utilización de los lugares de vertido de los desperdicios, generados por las unidades de obra a las cuales se hace referencia en este artículo.

900.5 Condiciones para el recibo de los trabajos

900.5.1 Controles

Durante la ejecución de los trabajos, se deben efectuar los siguientes controles principales:

Ÿ Verificar el estado y el funcionamiento de los vehículos de transporte.

Y Comprobar que las ruedas del equipo de transporte que circule sobre las diferentes capas de pavimento se mantengan limpias. El interventor debe exigir, al constructor, la limpieza de la superficie en caso de contaminación atribuible a la

circulación de los vehículos empleados para el transporte de los materiales. Si la limpieza no es suficiente, el constructor debe remover, a sus expensas, la capa correspondiente y reconstruirla de acuerdo con la respectiva especificación.

Y Confirmar que todas las vías de acceso por donde transitan los vehículos de carga, se encuentren libres de residuos o material particulado proveniente del transporte.

Ÿ Corroborar el cumplimiento de todas las medidas requeridas sobre seguridad para el transporte de materiales.

Ÿ Determinar la ruta para el transporte al sitio de utilización o desecho de los materiales, siguiendo el recorrido más corto y seguro posible.

Ÿ Exigir el cumplimiento de las normas ambientales para el transporte de materiales. Ÿ Garantizar el total cubrimiento de la carga transportada con material resistente, con el objeto de evitar la dispersión del mismo y emisiones fugitivas.

Ÿ Verificar y aprobar en el Plan de Manejo de Tránsito, los recorridos o las rutas por donde se transporta el material para asegurar los respectivos controles, siguiendo los parámetros y directrices establecidos en el Manual de Señalización Vial vigente del Ministerio de Transporte. El plan de calidad y el plan de inspección, medición y ensayo, son de obligatorio cumplimiento tal como se encuentra expresado en el numeral 103.2 del artículo 103, Responsabilidades especiales del constructor.

900.5.2 Condiciones específicas para el recibo y tolerancias

El interventor solo debe medir el transporte de materiales autorizados de acuerdo con esta especificación, los documentos del proyecto y sus instrucciones. Si el constructor utiliza para el transporte una ruta diferente y más larga que la aprobada por el interventor, este solamente debe computar la distancia más corta que se haya definido previamente. Para efectuar la medición del transporte de materiales se debe requerir, también, que se hayan efectuado las mediciones de densidad seca o peso unitario seco del material en su posición original; así mismo, si el material transportado es utilizado en la construcción, es necesario medir la densidad seca o el peso unitario seco del material compactado en su posición final.

900.6 Medida

Las unidades de medida para el transporte de materiales provenientes de excavaciones y derrumbes son las que se indican a continuación. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E823.

900.6.1 Materiales provenientes de la excavación de la explanación, canales y préstamos

Para el transporte de estos materiales a una distancia entre cien metros (100 m) y mil metros (1000 m), la unidad de medida debe 3 ser el metro cúbico-Estación (m-E). La medida corresponde al número de metros cúbicos, aproximado al entero, de material transportado medido en su posición original, multiplicado por la distancia de transporte, en estaciones de cien metros (100 m), con aproximación al décimo de estación. Cuando los materiales deban ser transportados a una distancia mayor de mil metros (1000 m), la unidad de medida debe ser el metro 3 cúbico-kilómetro (m-km).

La medida corresponde al número de metros cúbicos, aproximado al metro cúbico completo, medido en su posición original, y multiplicado por la distancia total de transporte expresada en kilómetros, con aproximación al décimo de kilómetro. En cualesquiera de los dos (2) casos, la distancia de transporte que se computa debe ser la existente entre el centro de gravedad de las excavaciones y el centro de gravedad de los sitios de utilización o disposición, menos los primeros cien metros (100 m), los cuales se deben establecer como distancia de acarreo libre.

Para los fines de estas especificaciones, se debe entender por acarreo libre el que se efectúa desde el sitio de extracción del material hasta una distancia de cien metros (100 m), el cual se considera como parte del concepto correspondiente a la extracción del material transportado, motivo por el cual no es objeto de medida ni de pago por separado.

Para el caso de materiales que se utilicen en la construcción y deban ser compactados, su volumen se debe calcular a partir del volumen de material colocado y compactado, en su posición final, multiplicado por la relación entre las densidades secas o los pesos unitarios secos del material compactado y de la densidad seca que presente el material en el banco en el cual es explotado, razón por la cual no se puede considerar como tal la densidad seca o el peso unitario seco que presente el material en estado suelto sobre la volqueta o en acopios intermedios. Por densidad seca o peso unitario seco en su posición original se debe entender la (el) que presente el material en el banco en el cual es explotado.

900.6.2 Materiales provenientes de derrumbes

La unidad de medida para el transporte de materiales provenientes de derrumbes, debe 3 ser el metro cúbico-kilómetro (m -km). La medida debe corresponder al número de metros cúbicos completos, medidos en estado suelto según se indica en el artículo 211, Remoción de derrumbes, de estas especificaciones y multiplicado por la distancia de transporte expresada en kilómetros, con aproximación al décimo de kilómetro. Debe tenerse en cuenta que la distancia de transporte debe ser la existente entre el centro de gravedad del sitio de extracción del derrumbe y el centro

de gravedad de los sitios de disposición final, menos cien metros (100 m) de distancia de acarreo libre.

900.7 Forma de pago

El pago de las cantidades de transporte de materiales determinadas en la forma indicada anteriormente, se debe hacer al precio unitario pactado en el contrato, por unidad de medida, conforme con lo establecido en este artículo y a las instrucciones del interventor.

El precio unitario debe cubrir todos los costos por concepto de mano de obra, equipo, herramientas, acarreo y, en general, todo costo relacionado con la correcta ejecución de los trabajos aquí expresados.

El precio unitario debe incluir los costos de administración e imprevistos y la utilidad del constructor. El precio unitario no debe incluir los costos por concepto de los diferentes cargues, descargues y disposición del material, los cuales se encuentran incorporados en los precios unitarios de los ítems correspondientes. Cualquier otro transporte no contemplado en este artículo, debe contemplarse en el precio unitario del ítem respectivo.

900.8 Ítem de pago

Ítem	Descripción	Unidad		
900.1	Transporte de materiales provenientes de la excavación de la explana- ción, canales y présta- mos, entre cien metros (100 m) y mil metros (1 000 m) de distancia	Metro cúbico-estación (m²-E)		
900.2	Transporte de materiales provenientes de la excavación de la explana- ción, canales y préstamos para distancias mayores de mil metros (1 000 m), medido a partir de cien metros (100 m)	Metro cúbico-kilómetro (m³-km)		
900.3	Transporte de materiales provenientes de derrum- bes, medido a partir de cien metros (100 m)	Metro cúbico-kilómetro (m²-km)		

2. CAPAS GRANULARES

2.1. SUB BASE GRANULAR CLASE B

DESCRIPCIÓN

Este trabajo consiste en el suministro, el transporte, la colocación, el humedecimiento o aireación, la extensión y la conformación, la compactación y el terminado de material de subbase granular aprobado sobre una superficiepreparada, en una o varias capas, de conformidad con los alineamientos, las pendientes y las dimensiones indicadas en los documentos del proyecto.

Para los efectos de estas especificaciones, se denomina subbase granular a lacapa o capas granulares localizadas entre la subrasante y la base granular o lacapa estabilizada, en todo tipo de pavimento, sin perjuicio de que los documentos del proyecto le señalen otra utilización.

Materiales Clases de subbase granular

Se definen tres clases de subbase granular, en función de la calidad de los agregados (clases A, B y C), como se indica en el numeral 320.2.2. Así mismo, se debe definir el tipo de granulometría que se va a emplear.

Tabla 320 — 1. Uso típico de las diferentes clases de subbase granular

Clase de subbase granular	Nivel de tránsito
Clase A	NT3
Clase B	NT2
Clase C	NT1

Si los documentos del proyecto no indican otra cosa, las clases de subbase granular se deben usar como se indica en la Tabla 320-1, en función del nivel de tránsito del proyecto, definido en el artículo 100, Ámbito de aplicación, términos y definiciones.

Requisitos de calidad para los agregados

Los agregados para la construcción de la subbase granular deben satisfacer los requisitos de calidad indicados en la Tabla 320-2. Además, se deben ajustara alguna de las franjas granulométricas que se muestran en la Tabla 320-3.

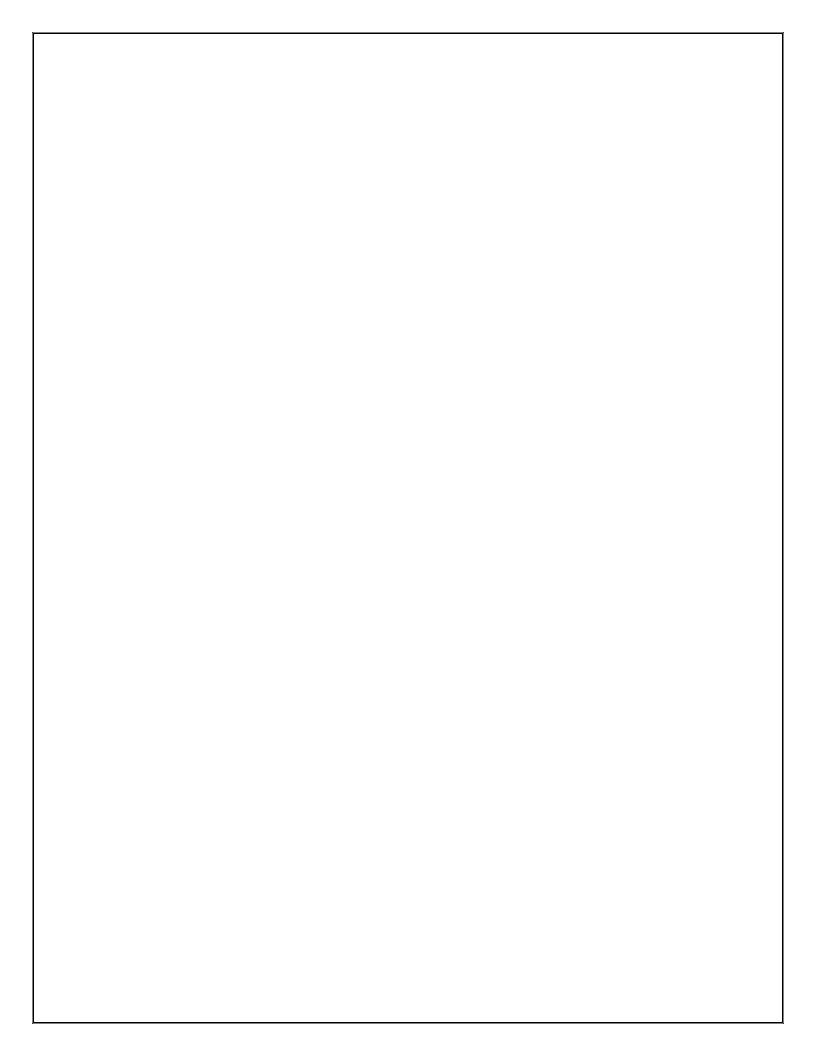


Tabla 320 — 3. Franjas granulométricas del material de subbase granular

	Tamiz (mm / U.S. Standard)								
	50,0	37,5	25,0	12,5	9,5	4,75	2,00	0,425	0,075
Tipo de gradación	2 Pulgadas	1 ½ Pulgadas	1 Pulgada	1/2 Pulgada	3/8 Pulgada	Nro. 4	Nro. 10	Nro. 40	Nro. 200
	Pasa tamiz (%)								
SBG-50 (Nota)	100	70 — 95	60 — 90	45 — 75	40 — 70	25 — 55	15 — 40	6 — 25	2 — 15
SBG-38 (Nota)	-	100	75 — 95	55 — 85	45 — 75	30 60	20 — 45	8 — 30	2 15
Tolerancias en producción sobre la fórmula de trabajo (±)	roducción 0 % 7 %		6 %			3 %			

Nota: el número indica el tamaño máximo, en milimetros, de las partículas en la gradación empleada. Tabla 320 — 2. Requisitos de los agregados para subbases granulares

Característica	Norma de	Subbase granular			
Caracteristica	ensayo INV	Clase A	Clase B	Clase C	
Dureza (O)					
Desgaste en la máquina de Los Ángeles (Granulometría A), máximo (96): - 500 revoluciones	E-218	50	50	50	
Degradación por abrasión en el equipo Micro-Deval, máximo (%).	E-238	30	35	-	
Durabilidad (O)					
Pérdidas en ensayo de solidez en sulfatos, máximo (%). (Nota): - Sulfato de sodio - Sulfato de magnesio	E-220	12 18	12 18	12 18	
Limpieza (F)					
Límite líquido, máximo (%).	E-125	25	25	25	
Índice de Plasticidad, máximo (%).	E-125 y E-126	6	6	6	
Equivalente de arena, mínimo (%).	E-133	25	25	25	
Contenido de terrones de arcilla y partículas deleznables, máximo (%).	E-211	2	2	2	
Resistencia del material (F)					
CBR (%): porcentaje asociado al valor minimo especificado de la densidad seca, medido en una muestra sometida a cuatro días (4 d) de inmersión, mínimo.	E-148	40	30	30	

Nota: se puede validar el requisito de durabilidad, empleando cualquiera de los dos sulfatos indicados.

Para prevenir segregaciones y garantizar los niveles de compactación yresistencia exigidos por la presente especificación, el material que produzca elconstructor debe dar lugar a una curva granulométrica uniforme y sensiblemente paralela a los límites de la franja, sin saltos bruscos de la partesuperior de un tamiz a la inferior de otro adyacente y viceversa.

Dentro de la franja elegida, el constructor debe proponer al interventor una fórmula de trabajo a la cual se debe ajustar durante la construcción de la capa,

con las tolerancias que se indican en la Tabla 320 - 3, pero sin permitir que la curva se salga de la franja adoptada.

Una vez elegida la franja granulométrica, no se puede cambiar por otra sin previa autorización del interventor.

Además, la relación entre el porcentaje que pasa el tamiz de 0,075 mm (nro. 200) y el porcentaje que pasa el tamiz de 0,425 mm (nro. 40), no debe excederde dos tercios (2/3) del espesor de la capa compactada, y el tamaño máximo nominal no debe exceder un tercio (1/3) del mismo espesor.

Equipo

Al respecto, rigen las condiciones generales que se indican en el numeral 300.3 del artículo 300. Para la construcción de la subbase granular se requieren equipos para la explotación de los materiales, eventualmente una planta de trituración, una unidad clasificadora y, de ser necesario, un equipo de lavado. Además, equipos para mezclado, cargue, transporte, extensión, humedecimiento y compactación del material, así como herramientas meno- res. Estos equipos deben ser capaces de asegurar la completa homogeneización de os componentes dentro de las tolerancias fijadas. Los equipos de cargue y transporte deben contar con superficies lisas y limpias, y disponer de lonas o cobertores adecuados para proteger el material durante su transporte.

Para la extensión del material, cuando la obra tenga una superficie por pavimentar superior a los setenta mil metros cuadrados (> 70 000 m²), se recomienda utilizar extendedoras automotrices, que deben estar dotadas de sistemas automáticos de nivelación y de los dispositivos necesarios para la puesta en obra de la capa de subbase, con la configuración deseada y para proporcionarle un mínimo de compactación. No obstante, la selección del equipo para la extensión debe ser responsabilidad del constructor, con la aprobación del interventor y se debe validar durante su operación.

El equipo de humedecimiento y mezclado debe ser capaz de asegurar la completa homogeneización de los componentes dentro de las tolerancias fijadas.

Ejecución de los trabajos

Explotación de materiales y elaboración de agregados

Rige lo indicado en el numeral 300.4.1 del artículo 300.

Preparación de la superficie existente

El interventor solo debe autorizar la colocación de material de subbasegranular, cuando la superficie sobre la cual se debe asentar tenga la compactación apropiada y las cotas y secciones indicadas en los documentos del proyecto, con las tolerancias establecidas.

Además, debe estar concluida la construcción de los desagües y los filtros necesarios para el drenaje de la calzada.

Si en la superficie de apoyo existen irregularidades que excedan las tolerancias determinadas en la especificación de la capa de la cual forma parte, de acuerdocon lo que se prescribe en la unidad de obra correspondiente, el constructor debe realizar las correcciones necesarias, hasta ser aprobadas por el interventor.

Fase de experimentación

Rige lo indicado en el numeral 300.4.2 del artículo 300.

Transporte y almacenamiento del material

El transporte y el almacenamiento de mate-riales deben cumplir lo establecidoen los numerales 300.4.5 y 300.4.3 de artículo 300, respectivamente.

Colocación, extensión y conformación del material

La colocación del material sobre la capa subyacente se debe hacer en una longitud que no sobrepase mil quinientos metros (1 500 m) de las operacionesde extensión, conformación y compactación del material.

El material se debe disponer en un cordón de sección uniforme, donde el interventor debe verificar su homogeneidad. Si la capa de subbase granular seva a construir mediante la combinación de dos (2) o más materiales, su mezclase puede realizar en planta o en un patio fuera de la vía.

En el caso de realizar la mezcla en planta, se debe agregar la dosificación requerida de agua para luego transportar el material a su sitio de colocación. Cuando se vaya a realizar la mezcla directamente en el sitio, esta se debe haceren un patio fuera de la vía, porque su mezcla dentro del área de colocación noestá permitida. La mezcla se debe realizar en seco y posteriormente se debe agregar el agua que sea requerida.

En caso de que sea necesario humedecer o airear el material para lograr el contenido de agua óptimo de compactación, el constructor debe emplear el equipo adecuado y aprobado, de manera que no perjudique la capa subyacentey deje el material con un contenido de agua uniforme. Este, después de humedecido o aireado, se debe extender en todo el ancho previsto en una capauniforme que permita obtener el espesor y el grado de compactación exigidos, de acuerdo con los resultados obtenidos en la fase de experimentación.

El material se debe extender de tal forma, que no requiera mayor manipulación para obtener el espesor, el ancho y el bombeo especifica-dos en los diseños, evitando en lo posible adiciones de forma sectorizada.

En todo caso, la cantidad de material extendido debe ser tal, que el espesor de la capa compactada no resulte inferior a cien milímetros (100 mm) ni superior a doscientos milímetros (200 mm). Si el espesor de subbase compactada, por construir, es superior a doscientos milímetros (200 mm), el material se debe colocar en dos o más capas, procurándose que el espesor deellas sea sensiblemente igual y nunca inferior a cien milímetros (100 mm). El material extendido debe mostrar una distribución granulométrica uniforme, sinsegregaciones evidentes. El interventor no debe permitir la colocación de la capa siguiente, antes de verificar y aprobar la compactación de la precedente, según lo estipulado en el numeral 320.5.2.2.2 de esta especificación. A menos que el interventor apruebe algún procedimiento alternativo, la capa ya compactada se debe escarificar superficialmente con el propósito de ligarla conla siguiente.

En operaciones de bacheo o en aplicaciones en áreas reducidas, el constructordebe proponer al interventor los métodos de extensión que garanticen la uniformidad y la calidad de la capa.

Compactación

Una vez que el material extendido de la subbase granular tenga el contenido de agua apropiado para asegurar la densidad de diseño requerida, se debe conformar ajustándose a los alineamientos y las secciones típicas del proyecto, y se debe compactar con el equipo aprobado por el interventor, hasta alcanzarla densidad seca especificada.

Aquellas zonas que, por su reducida extensión, su pendiente o su proximidad a obras de arte, no permitan el uso del equipo que normalmente se utiliza, se deben compactar con los medios adecuados para el caso, en forma tal que las densidades secas que se alcancen no sean inferiores a la obtenida en el restode la capa.

La compactación se debe efectuar longitudinalmente, comenzando por los bordes exteriores y avanzando hacia el centro, traslapando en cada recorrido una longitud no menor de la mitad del ancho del rodillo compactador. En las zonas peraltadas, la compactación se debe hacer del borde inferior al superior.

El acabado final de la subbase debe garantizar una superficie lisa y apropiadapara la conformación de las capas superiores.

Construcción de la subbase granular sobre un afirmadoexistente

Si el proyecto contempla que el afirmado existente forme parte de la capa de subbase granular, aquel se debe escarificar en una profundidad de cien milímetros (100 mm) o la que especifique los documentos del proyecto, y se debe conformar y compactar con el fin de obtener el mismo nivel de compactación exigido a la subbase granular, en un espesor de ciento cincuentamilímetros (150 mm).

Si el espesor del afirmado es menor de cien milímetros (100 mm), el interventorpuede autorizar que el material de subbase granular se mezcle con el del afirmado, previa la escarificación de este. En todo caso, se deben respetar los espesores de capa mencionados en el numeral 320.4.5.

Apertura al tránsito

Sobre las capas en ejecución se debe prohibir la acción de todo tipo de tránsito mientras no se haya completado la compactación. Si ello no es factible, el tránsito que necesariamente deba pasar sobre ellas se debe distribuir en formatal que no se concentren ahuellamientos sobre la superficie. El constructor debe responder por los daños originados por esa causa y debe repararlos, sincosto adicional para el Instituto Nacional de Vías (INVÍAS), de acuerdo con lasinstrucciones del interventor.

Limitaciones en la ejecución

No se debe permitir la extensión de ninguna capa de material de subbase granular mientras no haya sido realizada la nivelación y la comprobación del grado de compactación de la capa precedente. Tampoco se puede construir la subbase granular en momentos en que haya lluvia o fundado temor que ella ocurra, ni cuando la temperatura ambiente sea inferior a dos grados Celsius (2

°C).

Los trabajos de construcción de la subbase granular se deben realizar en condiciones de luz solar. Sin embargo, cuando se requiera terminar el proyectoen un tiempo especificado por INVÍAS o se deban evitar horas pico de tránsito público, el interventor puede autorizar el trabajo en horas de oscuridad, siempre y cuando el constructor garantice el suministro y la operación de un equipo de iluminación artificial que sea aprobado por este. Si el constructor noofrece esta garantía, no se le debe permitir el trabajo nocturno y debe ponera disposición de la obra el equipo y el personal adicionales para completar el trabajo en el tiempo especificado, operando únicamente durante las horas deluz solar.

Bacheos

Las excavaciones para la reparación de un pavimento asfáltico existente de estructura convencional (capas asfálticas densas, base granular y subbase granular), cuya profundidad sea superior a trescientos milímetros (300 mm), se deben rellenar con material de subbase granular desde el fondo de la excavación hasta una profundidad de doscientos cincuenta milímetros (250 mm) por debajo de la rasante existente. Este material debe ser compactado con el equipo adecuado hasta alcanzar la densidad seca especificada.

Teniendo en cuenta que algunos pavimentos asfálticos de la Red Vial Nacionaltienen estructuras muy gruesas y complejas, debido a que han sido sometidosa varias intervenciones de rehabilitación, el eventual uso de materiales de subbase granular en las operaciones de bacheo en ellos, se debe definir en los documentos del proyecto.

Conservación

El constructor debe conservar la capa de subbase granular en las condicionesen las cuales le fue aceptada por el interventor hasta el momento de ser recubierta por la capa inmediatamente superior, aun cuando aquella sea librada parcial o totalmente al tránsito público. Durante dicho lapso, el constructor debe reparar, sin costo adicional para INVÍAS, todos los daños quese produzcan en la subbase granular y restablecer el mismo estado en el cualella se aceptó.

Manejo ambiental

Rige lo indicado en el numeral 300.4.8 del artículo 300.

Condiciones para el recibo de los trabajos

Controles

Rige lo indicado en el numeral 300.5.1 del artículo 300.

cincuenta milímetros (250 mm) por debajo de la rasante existente. Este material debe ser compactado con el equipo adecuado hasta alcanzar la densidad seca especificada.

Teniendo en cuenta que algunos pavimentos asfálticos de la Red Vial Nacionaltienen estructuras muy gruesas y complejas, debido a que han sido sometidosa varias intervenciones de rehabilitación, el eventual uso de materiales de subbase granular en las operaciones de bacheo en ellos, se debe definir en los documentos del proyecto.

Conservación

El constructor debe conservar la capa de subbase granular en las condicionesen las cuales le fue aceptada por el interventor hasta el momento de ser recubierta por la capa inmediatamente superior, aun cuando aquella sea librada parcial o totalmente al tránsito público. Durante dicho lapso, el constructor debe reparar, sin costo adicional para INVÍAS, todos los daños quese produzcan en la subbase granular y restablecer el mismo estado en el cualella se aceptó.

Manejo ambiental

Rige lo indicado en el numeral 300.4.8 del artículo 300.

Condiciones para el recibo de los trabajos

Controles

Rige lo indicado en el numeral 300.5.1 del artículo 300.

Condiciones específicas para el recibo y tolerancias

Los retrasos en el cronograma debidos a las deficiencias o al reemplazo de materiales, así como los costos asociados a estas circunstancias, son responsabilidad del constructor.

Calidad de los agregados320.5.2.1.1 Control de procedencia

De cada fuente de agregados pétreos y por cada dos mil metros cúbicos (2 000m3) del material de un mismo tipo, se deben tomar cuatro (4) muestras

representativas para realizar los ensayos especificados en la Tabla 320-2. Los resultados deben satisfacer las exigencias indicadas en dicha tabla, so penade rechazo de los materiales deficientes.

Estos ensayos se deben repetir durante el suministro siempre que se produzcaun cambio de procedencia, y no se puede utilizar el material hasta contar conlos resultados de ensayo y la aprobación del interventor.

Durante esta etapa, el interventor debe comprobar, además, que el material de descapote de la fuente sea retirado correctamente y que todas las vetas dematerial granular inadecuado sean descartadas.

Control de producción

Durante la etapa de producción, se deben exa-minar las descargas a los acopios y se debe ordenar el retiro de los agregados que, a sim-ple vista, contengan tierra vegetal, presenten restos de materia orgánica, o tamaños superiores al máximo especificado. Así mismo, se debe ordenar que se acopienpor separado aquellos que presenten una anomalía evidente de aspecto, comodistinta coloración, plasticidad o segregación.

Al material ya colocado en la vía se le deben realizar controles con la frecuencia que se indica en la Tabla 320-4.

Ensayo	Norma de ensayo INV	Frecuencia		
Granulometria	E-213	Una (1) vez por jornada		
Limite líquido	E-125	Una (1) vez por jornada		
Índice de Plasticidad	E-125 y E-126	Una (1) vez por jornada		
Desgaste en máquina de Los Ángeles	E-218	Una (1) vez por semana		
Equivalente de arena	E-133	Una (1) vez por semana		
Ensayo modificado de compactación	E-142	Una (1) vez por semana		
CBR de laboratorio	E-148	Una (1) vez por semana		

Tabla 320 — 4. Verificaciones periódicas de la calidad del material de subbase granular

El interventor puede reducir la frecuencia de los ensayos a la mitad de lo indicado en la Tabla 320 — 4, siempre que considere que los materiales son suficientemente homogéneos, o si en el control de recibo de la obra terminadahubiese aceptado sin objeción diez (10) lotes consecutivos.

En el caso de mezcla de dos (2) o más mate-riales, los controles se deben realizar sobre el material mezclado y con la fórmula de trabajo aprobada parael proyecto.

Cuando el interventor considere que las características del material que está siendo explotado en una fuente han cambiado, se deben repetir todos los ensayos especificados en la Tabla 320 - 2 y adoptar los correctivos que seannecesarios.

No se debe permitir el empleo de materiales que no cumplan con los requisitosde calidad indicados en el numeral 320.2.2.

En la eventualidad de que el resultado de alguna prueba no sea satisfactorio, se deben tomar dos (2) muestras adicionales del mate-rial y se debe repetir laprueba. Los resultados de ambos ensayos deben ser satisfactorios o, de lo contrario, el interventor no debe autorizar la utilización de este material.

Conservación de las propiedades de los agregados

Los agregados no deben sufrir una degradación excesiva con motivo de su manejo y compactación en obra. Para verificarlo, cada semana se deben tomarmuestras representativas, al menos cada doscientos metros (200 m) del material colocado y compactado durante la semana previa, las cuales se debensometer a los ensayos que se indican en la Tabla 320 — 5. Los resultados de estos ensayos deben satisfacer las exigencias indicadas en el numeral 320.2.2.Si no las cumplen, se debe suspender inmediatamente el empleo del material y se debe delimitar el área donde se haya utilizado, la cual debe ser demoliday reconstruida por el constructor, sin costo adicional para INVÍAS, empleandoun material de subbase granular apropiado y que conserve sus propiedades según se especifica en este numeral.

Tabla 320 — 5. Ensayos para verificar la conservación de las propiedades de los agregados

Característica	Norma de ensayo INV
Granulometría	E-213
Limite líquido	E-125
Índice de Plasticidad	E-125 y E-126
Equivalente de arena	E-133

Calidad del producto terminado

320.5.2.2.1 Terminado

La capa de subbase granular terminada debe presentar una superficie uniforme, sin agrietamientos, baches, laminaciones ni segregaciones. Si el interventor considera que es necesario realizar correcciones por este concepto, debe delimitar el área afectada y el constructor la debe escarificar en un espesor de cien milímetros (100 mm) y, después de efectuar las correcciones

necesarias, debe mezclar y compactar de nuevo hasta que, tanto el área delimitada como las adyacentes, cumplan todos los requisitos exigidos en el presente artículo.

La rasante de la superficie terminada no debe superar a la teórica en ningún punto. Tampoco debe quedar por debajo de ella en más de quince milímetros(15 mm). La distancia entre el eje del proyecto y el borde de la berma no debeser inferior a la señalada en los documentos del proyecto.

Cuando los niveles de la rasante no se cum-plan por defecto y no existan problemas de encharcamiento, el interventor puede aceptar la superficiesiempre que la capa superior a ella compense la disminución con el espesor adicional necesario, sin incremento de costo para INVÍAS. De lo contrario, estasáreas deben ser rebajadas, humedecidas, compactadas y terminadas nuevamente, hasta cumplir las cotas y el espesor establecidos en los documentos del proyecto y con las exigencias de la presente especificación.

Cuando no se cumpla por exceso, este se debe corregir por cuenta del constructor, siempre que ello no suponga una reducción del espesor de la capapor debajo del valor especificado en los documentos del proyecto.

La verificación de los perfiles longitudinales y transversales del proyecto se debe hacer mediante puntos de referencia altimétrica a distancias no superiores a veinte metros (20 m). En las zonas de transición de peraltes, estaverificación se debe realizar cada diez metros (10 m) como máximo. El ancho de la sección en ningún caso debe ser inferior al establecido en los documentos del proyecto.

Compactación

Para efectos del control, se debe considerar como lote, que se acepta o rechazaen con-junto, la menor área construida que resulte de aplicar los siguientes criterios:

Quinientos metros (500 m) de capa compactada en el ancho total de lasubbase granular.

Tres mil quinientos metros cuadrados (3 500 m2) de subbase granular compactada.

La obra ejecutada en una jornada de trabajo.

La obra ejecutada con el mismo material, de la misma procedencia y con elmismo equipo y procedimiento de trabajo.

Los sitios para la determinación de la densidad de la capa se deben elegir al azar, según la norma de ensayo INV E-730, pero de manera que se realice al menos una (1) prueba por hectómetro. Se deben efectuar, como mínimo, cinco

(5) ensayos por lote.

Para el control de la compactación de una capa de subbase granular, se debecalcular su grado de compactación a partir de los resultados de los ensayos dedensidad en el terreno y del ensayo de relaciones contenido de agua-peso unitario (ensayo modificado de compactación), mediante la expresión que resulte aplicable entre las siguientes:

Material sin sobretamaños:

$$GC_i = \frac{Y_{d,i}}{Y_{d,max}} * 100$$
 [320.1]

Material con sobretamaños:

$$GC_i = \frac{\gamma_{d,i}}{C\gamma_{d,méx}} * 100 \quad [320.2]$$

Donde:

GCi, valor individual del grado de compactación, en porcentaje.

γd,i, valor individual del peso unitario seco del material en el terreno, determinado por cual-quier método aplicable de los descritos en las normas deensayo INV E-161, E-162 y E-164, sin efectuar corrección por presencia de sobretamaños, de manera que corresponda a la muestra total.

γd,máx, valor del peso unitario seco máximo del material, obtenido según la norma de ensayo INV E-142 (ensayo modificado de compactación) sobre una muestra representativa del mismo.

Cγd,máx, valor del peso unitario seco máximo del material, obtenido según lanorma de ensayo INV E-142 sobre una muestra representativa del mismo, y corregido por sobretamaños según la norma de ensayo INV E-143, numeral 3.1, de manera que corresponda a la muestra total.

Sobretamaños (fracción gruesa) (PFG), porción de la muestra total retenida enel tamiz de control correspondiente al método utilizado para realizar el ensayode compactación (norma INV E-142).

El peso unitario seco máximo corregido del material (Cγd,máx) que se use para calcular el grado de compactación individual (GCi) se debe obtener, para cadasitio, a partir del contenido de sobretamaños (PFG) presente en ese sitio.

Para la aceptación del lote se deben aplicar los siguientes criterios:

GCI (90) \geq 95,0 % se acepta el lote [320.3] GCI (90) < 95,0 % se rechaza el lote [320.4]Donde:

GCI (90), límite inferior del intervalo de con-fianza en el que, con unaprobabilidad del noventa por ciento (90 %), se encuentra el valor promedio del grado de compactación del lote, en porcentaje. Este límite se calcula según el numeral 107.3.1.3 del artículo 107, Control y aceptación de los trabajos, a partir de los valores individuales del grado de compactación (GCi).

Las verificaciones de compactación se deben efectuar en todo el espesor de lacapa que se está controlando.

Los lotes que no alcancen las condiciones mínimas de compactación se deben escarificar, homogenizar, llevar al contenido de agua adecuado y compactar nuevamente hasta obtener el valor de densidad seca especificado.

Espesor

Sobre la base de los sitios escogidos para el control de la compactación, el interventor debe determina el espesor medio de la capa compactada (em), el cual no puede ser inferior al espesor de diseño (ed).

$$em \ge ed [320.5]$$

Además, el espesor obtenido en cada determinación individual (ei) debe ser, cuando menos, igual al noventa por ciento (90 %) del espesor de diseño (ed). Se admite solo un (1) valor por debajo de dicho límite, siempre y cuando estevalor sea igual o mayor al ochenta y cinco por ciento (85 %) del espesor de diseño.

$$ei \ge 0.90 * ed [320.6]$$

Si uno o más de estos requisitos se incumplen, el constructor debe escarificarla capa en un espesor mínimo de cien milímetros (100 mm), añadir el materialnecesario de las mismas características, compactar nuevamente y terminar la capa conforme lo exige el presente artículo.

Si el espesor medio (em) resulta inferior al espesor de diseño (ed), pero ningúnvalor individual es inferior al noventa por ciento (90 %) del espesor de diseño, el interventor puede admitir el espesor construido, siempre que el constructor se comprometa, por escrito, a compensar la disminución con el espesor adicional necesario de la capa superior, sin que ello implique ningún incrementoen los cos-tos para INVÍAS. Si el constructor no suscribe este compromiso, sedebe proceder como en el párrafo anterior.

Planicidad

Se debe comprobar la uniformidad de la superficie de la obra ejecutada mediante la regla de tres metros (3 m), según la norma de ensayo INV E-793,en todos los sitios que el interventor considere conveniente. La regla se debe colocar tanto paralela como perpendicularmente al eje de la vía, y no se deben admitir variaciones superiores a veinte milímetros (20 mm) para cualquier punto que no esté afectado por un cambio de pendiente. Cualquier área dondese detecten irregularidades que excedan esta tolerancia, debe ser delimitada por el interventor, y el constructor debe corregirla con reducción o adición de mate-rial en capas de poco espesor, en cuyo caso, para asegurar buena adherencia, es obligatorio escarificar la capa existente y compactar nuevamente la zona afectada, hasta alcanzar los niveles de compactación exigidos en el presente artículo.

Zonas de bacheos

En las zonas de bacheos se deben satisfacer las mismas exigencias determinado, compactación, espesor y planicidad incluidas en este numeral, peroqueda a criterio del interventor la decisión sobre la frecuencia de las pruebas, la cual debe depender del tamaño de las áreas tratadas.

Correcciones por variaciones

en el diseño o por causas no imputables al constructor

Cuando sea necesario efectuar correcciones a la capa de subbase granular, por modificaciones en el diseño estructural o por fuerza mayor u otras causas inequívocamente no imputables al constructor, el interventor debe delimitar elárea afectada y ordenar las correcciones necesarias, por cuyo trabajo debe autorizar el pago al constructor, al respectivo precio unitario del contrato.

Medida

La subbase granular se debe medir según lo descrito en el numeral 300.6.1 delartículo 300. En el caso de bacheos con material granular de subbase, se debeaplicar lo señalado en el numeral 300.6.2 del mismo artículo. En todos los casos, la medición de volúmenes de material colocado se debe hacer al metrocúbico (m3), aproximado a la décima (0,1).

Forma de pago

La subbase granular se debe pagar según lo que sea aplicable del numeral 300.7 del artículo 300.

320.8 Ítem de pago

Ítem	Descripción	Unidad
320.1	Subbase granular clase A	Metro cúbico (m³)
320.2	Subbase granular clase B	Metro cúbico (m³)
320.3	Subbase granular clase C	Metro cúbico (m³)
320.4	Subbase granular para bacheo clase A	Metro cúbico (m³)
320.5	Subbase granular para bacheo clase B	Metro cúbico (m³)
320.6	Subbase granular para bacheo clase C	Metro cúbico (m³)

2.2. BASE GRANULAR CLASE B

330.1GENERALIDADES

Este trabajo consiste en el suministro, el transporte, la colocación, el humedecimiento o la aireación, la extensión y la conformación, la compactación y el terminado de material de base granular aprobado sobre una superficie preparada, en una o varias capas, de conformidad con los alineamientos, las pendientes y las dimensiones indicados en los documentos del proyecto.

330.2 MATERIALES

330.2.1 clases de base granular

Se definen tres clases de base granular en función de la calidad de los agregados (clases A, B y C), como se indica en la Tabla 330 — 2. Los documentos del proyecto deben definir la clase de base granular por utilizar, así mismo, definir el tipo de granulometría que se debe emplear.

Si los documentos del proyecto no indican otra cosa, las clases de base granular se deben usar como se indica en la Tabla 330 - 1, en función del nivel de tránsito del proyecto.

Tabla 330 - 1. Uso típico de las diferentes clases de base granular

Clase de base granular	Nivel de tránsito
Clase A	NT3
Clase B	NT2
Clase C	NT1

330.2.2 Requisitos de calidad para los agregados

Los agregados para la construcción de la base granular deben satisfacer los requisitos de calidad indicados en la Tabla 330-2. Además, se deben ajustar a alguna de las franjas granulométricas que se muestran en la Tabla 330-3; salvo que los documentos del proyecto indiquen otra cosa, para niveles de tránsito NT3 se deben usar bases granulares de gradación gruesa. Cuando los materia-les de base no cumplan los requisitos de la Tabla 330-2, estos pueden ser tratados con cemento para mejorar sus propiedades. Las recomendaciones de construcción para tener en cuenta son las establecidas en el artículo 350, Materiales granulares tratados con cemento como capa estructural.

No se debe aceptar el suministro y la utilización de materiales que no cumplan los requisitos indicados en esta especificación.

Tabla 330 - 2. Requisitos de los agregados para bases granulares

2-1/4	Norma de	Base granular			
Característica	ensayo INV	Clase A	Clase B	Clase C	
Dureza (O)					
Desgaste en la máquina de Los Ángeles (Granulometría A), máximo (%): - 500 revoluciones	E-218	35	40	40	
- 100 revoluciones		7	8	8	
Degradación por abrasión en el equipo Micro-Deval, máximo (%).	E-238	25	30	-	
Evaluación de la resistencia mecánica por el método del 10 % de finos: - Valor en seco, mínimo (kN) - Relación húmedo/seco, mínimo (%)	E-224	90 75	70 75	-	
Durabilidad (O)					
Pérdidas en ensayo de solidez en sulfatos, máximo (%). (Nota 1): - Sulfato de sodio - Sulfato de magnesio	E-220	12 18	12 18	12 18	
Limpieza (F)					
Límite líquido, máximo (%).	E-125	-	-	25	
Índice de Plasticidad, máximo (%).	E-125 y E-126	0	0	3	
Equivalente de arena, mínimo (%).	E-133	30	30	30	
Valor de azul de metileno, máximo (Nota 2).	E-235	10	10	10	
Contenido de terrones de arcilla y partículas deleznables, máximo (%).	E-211	2	2	2	
Geometría de las Partículas (F)					
Índices de alargamiento y aplanamiento, máximo (%).	E-230	35	35	35	
Caras fracturadas, mínimo (%). (Nota 3): - Una cara - Dos caras	E-227	90 85	70 50	50 -	
Angularidad de la fracción fina, mínimo (%).	E-239	35	35	-	
Resistencia de material (F)					
CBR (%): porcentaje asociado al grado de compactación mínimo especificado (numeral 330.5.2.2.2); el CBR se debe medir sobre muestras sometidas previamente a cuatro días (4 d) de inmersión.	E-148	≥ 95	≥ 80	≥ 80	

Nota 1: el ensayo de solidez se puede realizar con sulfato de sodio o sulfato de magnesio, de acuerdo con los documentos del proyecto, o con lo solicitado por el interventor.

Nota 2: el ensayo de valor de azul de metileno solo se debe exigir cuando el equivalente de arena del material de base granular sea inferior a treinta por ciento (30 %), pero igual o superior a veinticinco por ciento (25 %).

Nota 3: se puede reducir el porcentaje de partículas con caras fracturadas, siempre y cuando el constructor demuestre, mediante ensayos de laboratorio o tramos de prueba, que no se ve afectada la resistencia requerida por los materiales.

Tabla 330 — 3. Franjas granulométricas del material de base granular

	Tamiz (mm / U.S. Standard)							
Tipo de gradación	37,5	25,0	19,0	9,5	4,75	2,00	0,425	0,075
	1½ Pulgadas	1 Pulgada	3/4 Pulgada	3/8 Pulgada	Nro. 4	Nro. 10	Nro. 40	Nro. 200
	Pasa tamiz (%)							
Bases granulares de gradación gruesa								
BG-40	100	75 — 100	65 — 90	45 — 68	30 — 50	15 — 32	7 — 20	0 — 9
BG-27	-	100	75 — 100	52 — 78	35 — 59	20 — 40	8 — 22	0 — 9
Bases granulares de gradación fina								
BG-38	100	70 — 100	60 — 90	45 — 75	30 — 60	20 — 45	10 — 30	5 — 15
BG-25	-	100	70 — 100	50 — 80	35 — 65	20 — 45	10 — 30	5 — 15
Tolerancias en producción sobre la fórmula de trabajo (±)	0 %		7 %			6 %		3 %

Para prevenir segregaciones y garantizar los niveles de compactación y resistencia exigidos por la presente especificación, el material que produzca el constructor debe dar lugar a una curva granulométrica uniforme y sensiblemente paralela a los límites de la franja, sin saltos bruscos de la parte superior de un tamiz a la inferior de otro adyacente y viceversa.

Dentro de la franja elegida, el constructor debe proponer al interventor una fórmula de trabajo a la cual se debe ajustar durante la construcción de la capa, con las tolerancias que se indican en la Tabla 330-3, pero sin permitir que la curva se salga de la franja adoptada. Una vez elegida la franja granulométrica, esta no se puede cambiar por otra, sin previa autorización del interventor.

Los agregados gruesos, retenidos sobre el tamiz de 4,75 mm (nro. 4), deben ser partí-culas resistentes, durables, constituidas de fragmentos de roca o grava. No se deben usar materiales que se quiebran o degradan con los ciclos alternados de humedecimiento-secado.

Los agregados finos, que pasan por el tamiz de 4,75 mm (nro. 4), deben estar constituidos por arenas naturales o trituradas, y por par-tículas minerales que pasan por el tamiz de 0,075 mm (nro. 200).

Además, la relación entre el porcentaje que pasa el tamiz de 0,075 mm (nro. 200) y el porcentaje que pasa el tamiz de 0,425 mm (nro. 40), no debe exceder de dos tercios (2/3) del espesor de la capa compactada, y el tamaño máximo nominal no debe exceder un tercio (1/3) del mismo espesor.

330.3 Equipo

Al respecto, rigen las condiciones generales que se indican en el numeral 300.3 del artículo 300. Para la construcción de la base granu-lar se requieren equipos para la explotación de los materiales, una planta de trituración, una unidad clasificadora y, de ser necesario, un equipo de lavado. También se requieren equipos para mezclado, cargue, transporte, extensión, humedecimiento y compactación del material, así como herramientas menores.

Estos equipos deben ser capaces de asegurar la completa homogeneización de los componentes dentro de las tolerancias fijadas; los equipos de cargue y transporte deben contar con superficies lisas y limpias, y disponer de lonas o cobertores adecuados para proteger el material durante su transporte. Para la extensión del material, cuando la obra tenga una superficie por conformar superior a los setenta mil metros cuadrados (> 70 000 m2), se deben utilizar extendedoras automotrices, que deben estar dotadas de sistemas automáticos de nivelación y de los dispositivos necesarios para la puesta en obra de la capa de base con la configuración deseada, y para proporcionarle un mínimo de compactación. En el resto de los casos el constructor debe disponer los equipos necesarios para la extensión del material, con previa autorización del interventor.

Todos los compactadores deben ser autopropulsados y tener inversores del sentido de la marcha de acción suave. Como mínimo se debe emplear un (1) compactador vibratorio de rodillos metálicos.

El rodillo metálico del compactador vibra-torio debe tener una carga estática sobre la generatriz no inferior a treinta kilonewtons por metro (30 kN/m) y debe ser capaz de alcanzar una masa de al menos quince mil kilogramos (15 000 kg), con amplitudes y frecuencias de vibración adecuadas.

Si se utilizan compactadores de neumáticos, estos deben ser capaces de alcanzar una masa de, al menos, veintiocho mil kilogramos (28 000 kg) y una carga por rueda de al menos treinta y nueve coma dos kilonewtons (39,2 kN) aproximadamente, con una presión de inflado que pueda llegar a alcanzar un valor no inferior a cero coma ocho megapascales (0,8 MPa).

Los compactadores de rodillos metálicos deben tener dispositivos automáticos para eliminar la vibración al invertir el sentido de la marcha, y no deben presentar surcos ni irregularidades en ellos. Los compactadores de neumáticos deben tener ruedas lisas, en número, tamaño y configuración tales que permitan el solape de las huellas de las delanteras con las de las traseras. En los lugares inaccesibles para los equipos de compactación convencionales, el constructor debe emplear otros de tamaño y

diseño adecuados para la labor que se pretenda realizar, y siempre deben ser autorizados por el interventor.

El agua añadida se debe controlar mediante un caudalímetro, cuya precisión debe ser superior al dos por ciento (2 %), y un totalizador con indicador en la cabina de mando de la central. El equipo de humedecimiento y mezclado debe ser capaz de asegurar la completa homogeneización de los componentes dentro de las tolerancias fijadas.

330.4 Ejecución de los trabajos

330.4.1 Explotación de materiales y elaboración de agregados

Rige lo indicado en el numeral 300.4.1 del artículo 300.

330.4.2 Preparación de la superficie existente

El interventor solo debe autorizar la colocación de material de base granular cuando la superficie sobre la cual se debe asentar tenga la compactación apropiada, así como las cotas y las secciones indicadas en los documentos del proyecto, con las tolerancias establecidas. Además, debe estar concluida la construcción de los desagües y los filtros necesarios para el drenaje de la calzada.

Si en la superficie de apoyo existen irregularidades que excedan las tolerancias determinadas en la especificación de la capa de la cual forma parte, de acuerdo con lo que se prescribe en la unidad de obra correspondiente, el constructor debe hacer las correcciones necesarias, las cuales deben ser aprobadas por el interventor.

La base granular no se debe extender sobre superficies que presenten capas blandas, arcillosas u orgánicas.

330.4.3 Fase de experimentación

Rige lo indicado en el numeral 300.4.2 del artículo 300.

330.4.4 Transporte y almacenamiento del material

El transporte y el almacenamiento de mate-riales deben cumplir lo establecido en los numerales 300.4.5 y 300.4.3 del artículo 300, respectivamente.

330.4.5 Colocación, extensión y conformación del material

La colocación del material sobre la capa subyacente se debe hacer en una longitud que no sobrepase mil quinientos metros (1 500 m) de las operaciones de extensión, conformación y compactación del material.

El material se debe disponer en un cordón de sección uniforme donde el interventor debe verificar su homogeneidad. Si la capa de base granular se va a construir mediante la combinación de dos (2) o más materiales, su mezcla, se puede realizar en planta o directa-mente en el sitio.

En el caso de realizar la mezcla en planta, se debe agregar la dosificación requerida de agua para luego transportar el material a su sitio de colocación; y en el caso en el que se vaya a realizar la mezcla directamente en el sitio, esta se debe hacer en un patio fuera de la vía, por cuanto su mezcla dentro del área de colocación no está permitida. La mezcla se debe realizar en seco y posteriormente se debe agregar el agua que sea requerida,

En caso de que sea necesario humedecer o airear el material para lograr el contenido de agua óptimo de compactación, el constructor debe emplear el equipo adecuado y aprobado, de manera que no perjudique la capa subyacente y deje el material con un contenido de agua uniforme. Este, después de humedecido o aireado, se debe extender en todo el ancho previsto en una capa uniforme que permita obtener el espesor y el grado de compactación exigidos, de acuerdo con los resultados obtenidos en la fase de experimentación.

El material se debe extender de tal forma, que no requiera mayor manipulación para obtener el espesor, el ancho y el bombeo especifica-dos en los diseños, evitando en lo posible adiciones de forma sectorizada.

En todo caso, la cantidad de material extendido debe ser tal, que el espesor de la capa compactada no resulte inferior a cien milímetros (100 mm) ni superior a doscientos milímetros (200 mm). Si el espesor de base compactada por construir es superior a doscientos milímetros (200 mm), el material se debe colocar en dos o más capas, procurándose que el espesor de ellas sea sensiblemente igual y nunca inferior a cien milímetros (100 mm). El mate-rial extendido debe mostrar una distribución granulométrica uniforme, sin segregaciones evidentes. El interventor no debe permitir la colocación de la capa siguiente, antes de verificar y aprobar la compactación de la precedente, siguiendo lo estipulado en la sección 330.5.2.2.2 de esta especificación. A menos que el interventor apruebe algún procedimiento alternativo, la capa ya compactada se debe escarificar superficialmente con el propósito de ligarla con la siguiente.

En operaciones de bacheo o en aplicaciones en áreas reducidas, el constructor debe proponer al interventor los métodos de extensión que garanticen la uniformidad y calidad de la capa.

330.4.6 Compactación

Una vez que el material extendido de la base granular tenga el contenido de agua apropiado, entendido como el contenido de agua igual que el óptimo, necesario para asegurar la densidad de diseño requerida, se debe conformar ajustándose a los alineamientos y las secciones típicas del proyecto y se debe compactar con el equipo aprobado por el interventor, hasta alcanzar la densidad seca especificada.

Aquellas zonas que, por su reducida extensión, su pendiente o su proximidad a obras de arte no permitan el uso del equipo que normalmente se utiliza, se deben compactar con los medios adecuados para el caso, en forma tal que las densidades secas que se alcancen no sean inferiores a la obtenida en el resto de la capa.

La compactación se debe efectuar longitudinalmente, comenzando por los bordes exteriores y avanzando hacia el centro, traslapando en cada recorrido una longitud no menor de la mitad del ancho del rodillo compactador. En las zonas peraltadas, la compactación se debe hacer del borde inferior al superior.

La última capa extendida debe garantizar una superficie lisa y apropiada para la conformación de las capas superiores.

330.4.7 Apertura al tránsito

Sobre las capas en ejecución se debe prohibir la acción de todo tipo de tránsito mientras no se haya completado la compactación. Si ello no es factible, el tránsito que necesariamente deba pasar sobre estas capas se debe distribuir en forma tal que no se con-centren ahuellamientos sobre la superficie. El constructor debe responder por los daños producidos por esta causa y debe repararlos, sin costo adicional para el Instituto Nacional de Vías (INVÍAS), de acuerdo con las instrucciones del interventor.

330.4.8 Limitaciones en la ejecución

No se debe permitir la extensión de ninguna capa de material de base granular mientras no haya sido realizada la nivelación y la comprobación del grado de compactación de la capa precedente. Tampoco se puede construir la base granular en momentos en que haya lluvia o fundado temor que ella ocurra, ni cuando la temperatura ambiente sea inferior a dos grados Celsius (2 °C).

Los trabajos de construcción de la base granular se deben realizar en condiciones de luz solar. Sin embargo, cuando se requiera ter-minar el proyecto en un tiempo especificado por INVÍAS o se deban evitar horas pico de tránsito público, el interventor puede autorizar el trabajo en horas de oscuridad, siempre y cuando el constructor garantice el suministro y la operación de un equipo de iluminación artificial que sea aprobado por este. Si el constructor no ofrece esta garantía, no se

le debe permitir el trabajo nocturno y debe poner a disposición de la obra el equipo y el personal adicionales para completar el trabajo en el tiempo especificado, operando únicamente durante las horas de luz solar.

330.4.9 Bacheos

En las excavaciones para la reparación de un pavimento existente de estructura convencional (capas asfálticas densas, base granular y subbase granular), que tengan una profundidad superior a trescientos milímetros (300 mm), se debe emplear material de base granular para su relleno por encima de la subbase granular descrita en el numeral 320.4.10 del artículo 320, y hasta una profundidad de setenta y cinco milímetros (75 mm) por debajo de la rasante existente.

Si la excavación tiene una profundidad mayor de ciento cincuenta milímetros (150 mm) y menor o igual a trescientos milímetros (300 mm), ella se debe rellenar con material de base granular hasta setenta y cinco milímetros (75 mm) por debajo de la rasante existente.

En las excavaciones para reparación del pavimento existente cuya profundidad sea menor o igual a ciento cincuenta milímetros (150 mm), no se debe emplear material de base granular en su relleno.

El material de base granular colocado en estos rellenos debe ser compactado hasta alcanzar la densidad seca especificada.

Teniendo en cuenta que algunos pavimentos asfálticos de la Red Vial Nacional tienen estructuras no convencionales, muy gruesas y complejas, debido a que han sido sometidas a varias intervenciones de rehabilitación, el eventual uso de materiales de base granular en las operaciones de bacheo en ellos y las respectivas profundidades de colocación, se debe definir en los documentos del proyecto.

330.4.10 Conservación

El constructor debe conservar la capa de base granular en las condiciones en las cuales le fue aceptada por el interventor, hasta el momento de ser recubierta por la capa inmediatamente superior, aun cuando aquella sea librada parcial o totalmente al tránsito público. Durante dicho lapso, el constructor debe reparar, sin costo adicional para INVÍAS, todos los daños que se produzcan en la base granular y restablecer el mismo estado en el cual ella se aceptó.

330.4.11 Manejo ambiental

Rige lo indicado en el numeral 300.4.8 del artículo 300.

330.5 Condiciones para el recibo de los trabajos

330.5.1 Controles

Rige lo indicado en el numeral 300.5.1 del artículo 300.

330.5.2 Condiciones específicas para el recibo y tolerancias

Los retrasos en el cronograma debidos a las deficiencias o al reemplazo de materiales, así como los costos asociados a estas circunstancias, son responsabilidad del constructor.

330.5.2.1 Calidad de los agregados

330.5.2.1.1 Control de procedencia

De cada fuente de agregados pétreos y por cada dos mil metros cúbicos (2000 m3) del material de un mismo tipo se deben tomar cuatro (4) muestras representativas para realizar los ensayos especificados en la Tabla 330 — 2. Los resultados deben satisfacer las exigencias indicadas en dicha tabla, so pena de rechazo de los materiales deficientes.

El ensayo para determinar el valor de azul de metileno sobre el agregado combinado solo es necesario si el valor del equivalente de arena es inferior a treinta por ciento (< 30 %), pero es igual o superior a veinticinco por ciento $(\ge 25 \%)$.

Durante esta etapa, el interventor debe comprobar, además, que el material del descapote de la fuente sea retirado correctamente y que todas las vetas de material granular inadecuado sean descartadas.

330.5.2.1.2 Control de producción

Durante la etapa de producción, se deben exa-minar las descargas a los acopios y se debe ordenar el retiro de los agregados que, a sim-ple vista, contengan tierra vegetal, presenten restos de materia orgánica, o tamaños superiores al máximo especificado. Así mismo, se debe ordenar que se acopien por separado aquellos que presenten una anomalía evidente de aspecto, como distinta coloración, plasticidad o segregación.

Al material ya colocado en la vía se le deben realizar controles con la frecuencia que se indica en la Tabla 330 - 4.

Tabla 330 - 4. Verificaciones periódicas de la calidad del material de base granular

Característica	Norma de ensayo INV	Frecuencia
Granulometría	E-213	Una (1) vez por jornada
Límite líquido	E-125	Una (1) vez por jornada
Índice de Plasticidad	E-125 y E-126	Una (1) vez por jornada
Equivalente de arena	E-133	Una (1) vez por semana
Valor de azul de metileno (si aplica)	E-235	Una (1) vez por semana
Ensayo modificado de compactación	E-142	Una (1) vez por semana
CBR de laboratorio	E-148	Una (1) vez por semana

El interventor puede reducir la frecuencia de los ensayos a la mitad de lo indicado en la Tabla 330 — 4, siempre que considere que los materiales son suficientemente homogéneos o si en el control de recibo de la obra terminada hubiese aceptado sin objeción diez (10) lotes consecutivos.

En el caso de mezcla de dos (2) o más mate-riales, los controles se deben realizar sobre el material mezclado y con la fórmula de trabajo aprobada para el proyecto.

Cuando el interventor considere que las características del material que está siendo explotado en una fuente han cambiado, se deben repetir todos los ensayos especificados en la Tabla 330 — 2 y adoptar los correctivos que sean necesarios.

No se debe permitir el empleo de materiales que no satisfagan los requisitos de calidad indicados en el numeral 330.2.2.

En la eventualidad de que el resultado de alguna prueba no sea satisfactorio, se deben tomar dos (2) muestras adicionales del mate-rial y se debe repetir la prueba. Los resultados de ambos ensayos deben ser satisfactorios, de lo contrario, el interventor no debe autorizar la utilización de este material.

330.5.2.1.3 Conservación de las propiedades de los agregados

Los agregados no deben sufrir una degradación excesiva por motivo de su manejo y compactación en obra. Para verificarlo, cada semana se deben tomar muestras representativas, al menos cada doscientos metros (200 m) del material colocado y compactado durante la semana previa, las cuales se deben someter a los ensayos que se indican en la Tabla 330 — 5. Los resultados de estos ensayos deben satisfacer las exigencias indicadas en el numeral 330.2.2. Si no las cumplen, se debe suspender inmediatamente el empleo del material y se debe delimitar el área donde se haya utilizado, la cual debe ser demolida y reconstruida por el constructor, sin costo adicional para INVÍAS, empleando un material de base granular apropiado y que conserve sus propiedades según se especifica en este numeral. La reparación de la

zona del material extraído debe cumplir con lo especificado en este artículo para las zonas de bacheo.

Tabla 330 — 5. Ensayos para verificar la conservación de las propiedades de los agregados

Característica	Norma de ensayo INV
Granulometría	E-213
Límite líquido	E-125
Índice de Plasticidad	E-125 y E-126
Equivalente de arena	E-133

330.5.2.2 Calidad del producto terminado

330.5.2.2.1 Terminado

La capa de base granular terminada debe presentar una superficie uniforme, sin agrietamientos, baches, laminaciones ni segregaciones. La matriz de agregado fino no se debe desplazar bajo la acción del barrido o del tránsito normal. Si el interventor considera que es necesario realizar correcciones por este concepto, debe delimitar el área afectada y el constructor la debe escarificar en un espesor de cien milímetros (100 mm) y, después de efectuar las correcciones necesarias, debe mezclar y compactar de nuevo hasta que, tanto el área delimitada como las adyacentes, cumplan todos los requisitos exigidos en el presente artículo.

La rasante de la superficie terminada no debe superar a la teórica en ningún punto. Tampoco debe quedar por debajo de ella en más de quince milímetros (15 mm). En perfiles transversales cada veinte metros (20 m), se debe comprobar el ancho de la capa extendida, que en ningún caso debe ser inferior al establecido en los documentos del proyecto.

Cuando la tolerancia sea rebasada por defecto y no existan problemas de encharcamiento, el interventor puede aceptar la superficie siempre que la capa superior a esta compense la disminución con el espesor adicional necesario, sin que ello implique costo para INVÍAS. De lo contrario estas áreas deben ser rebajadas, humedecidas, compactadas y ter-minadas nuevamente, hasta cumplir las cotas y el espesor establecidos en los documentos del proyecto y con las exigencias de la presente especificación.

Cuando la tolerancia sea rebasada por exceso, el constructor debe corregirlo por su cuenta, siempre que esto no suponga una reducción del espesor de la capa por debajo del valor especificado en los documentos del proyecto.

330.5.2.2.2 Compactación

Para efectos del control, se debe considerar como lote, que se acepta o rechaza en con-junto, la menor área construida que resulte de aplicar los siguientes criterios:

- Quinientos metros (500 m) de capa compactada en el ancho total de la base granular.
- Tres mil quinientos metros cuadrados (3 500 m2) de base granular compactada.
- La obra ejecutada en una jornada de trabajo.
- La obra ejecutada con el mismo material, de la misma procedencia y con el mismo equipo y procedimiento de trabajo.

Los sitios para la determinación de la densidad de la capa se deben elegir al azar, según la norma de ensayo INV E-730, pero de manera que se realice al menos una (1) prueba por hectómetro. Se deben efectuar, como mínimo, cinco (5) ensayos por lote.

Para el control de la compactación de una capa de base granular, se debe calcular su grado de compactación, a partir de los resultados de los ensayos de densidad en el terreno y del ensayo de relaciones contenido de agua-peso unitario (ensayo modificado de compactación), mediante la expresión que resulte aplicable entre las siguientes:

Material sin sobretamaños:

$$GC_i = \frac{\gamma_{d,i}}{\gamma_{d,mdx}} * 100 \quad [330.1]$$

Material con sobretamaños:

$$GC_i = \frac{\gamma_{d,i}}{C\gamma_{d,mdx}} * 100 \quad [330.2]$$

Donde:

GCi: valor individual del grado de compactación, en porcentaje.

γd,i: valor individual del peso unitario seco del material en el terreno, determinado por cualquier método aplicable de los descritos en las normas de ensayo INV E-161, E-162 y E-164, sin efectuar corrección por presencia de sobretamaños, de manera que corresponda a la muestra total.

γd,máx: valor del peso unitario seco máximo del material, obtenido según la norma de ensayo INV E-142 (ensayo modificado de compactación) sobre una muestra representativa del mismo.

Cγd,máx: valor del peso unitario seco máximo del material, obtenido según la norma de ensayo INV E-142 sobre una muestra representativa del mismo, y corregido por sobretamaños según la norma de ensayo INV E-143, numeral 3.1, de manera que corresponda a la muestra total.

Sobretamaños (fracción gruesa) (PFG), proporción de la muestra total retenida en el tamiz de control correspondiente al método utilizado para realizar el ensayo de compactación (norma INV E-142).

El peso unitario seco máximo corregido del material (Cγd,máx) que se use para calcular el grado de compactación individual (GCi) se debe obtener, para cada sitio, a partir del contenido de sobretamaños (PFG) presente en ese sitio.

Para la aceptación del lote se deben aplicar los siguientes criterios:

GCl (90) \geq 98 % se acepta el lote [330.3]

GCl (90) < 98 % se rechaza el lote [330.4]

Donde:

GCI (90), límite inferior del intervalo de con-fianza en el que, con una probabilidad del noventa por ciento (90 %), se encuentra el valor promedio del grado de compactación del lote, en porcentaje; se calcula según el numeral 107.3.1.3 del artículo 107, Control y aceptación de los trabajos, a partir de los valores individuales del grado de compactación (GCi).

Las verificaciones de compactación se deben efectuar en todo el espesor de la capa que se está controlando.

Los lotes que no alcancen las condiciones mínimas de compactación se deben escarificar, homogenizar, llevar al contenido de agua adecuado y compactar nuevamente hasta obtener el valor de densidad seca especificado.

330.5.2.2.3 Espesor

Sobre la base de los sitios escogidos para el control de la compactación, el interventor debe determinar el espesor medio de la capa compactada (em), el cual no debe ser inferior al espesor de diseño (ed).

Además, el espesor obtenido en cada determinación individual (ei) debe ser, cuando menos igual al noventa por ciento (90 %) del espesor de diseño (ed). Se admite solo un (1) valor por debajo de dicho límite, siempre y cuando este valor sea igual o mayor al ochenta y cinco por ciento (85 %) del espesor de diseño.

$$ei \ge 0.90 * ed [330.6]$$

Si se incumple alguno de estos requisitos, el constructor debe escarificar la capa en un espesor mínimo de cien milímetros (100 mm), añadir el material necesario de las mismas características, compactar nuevamente y ter-minar la capa conforme lo exige el presente artículo.

Si el espesor medio (em) resulta inferior al espesor de diseño (ed), pero ningún valor individual es inferior al noventa por ciento (90 %) del espesor de diseño, el interventor puede admitir el espesor construido, siempre que el constructor se comprometa, por escrito, a compensar la disminución con el espesor adi-cional necesario de la capa superior, sin que ello implique ningún incremento en los costos para INVÍAS. Si el constructor no suscribe este compromiso, se debe proceder como en el párrafo anterior.

330.5.2.2.4 Planicidad

Se debe comprobar la uniformidad de la superficie de la obra ejecutada mediante la regla de tres metros (3 m), según norma de ensayo INV E-793, en todos los sitios que el interventor lo considere conveniente. La regla se debe colocar tanto paralela como perpendicularmente al eje de la vía, y no se deben admitir variaciones superiores a diez milímetros (10 mm) para cualquier punto que no esté afectado por un cambio de pendiente. Cualquier área donde se detecten irregularidades que excedan esta tolerancia, debe ser delimitada por el interventor, y el constructor la debe corregir con reducción o adición de material en capas de poco espesor, en cuyo caso, para asegurar buena adherencia, es obligatorio escarificar la capa existente y compactar nuevamente la zona afectada, hasta alcanzar los niveles de compactación exigidos en el presente artículo.

330.5.2.2.5 Zonas de bacheos

En las zonas de bacheos se deben satisfacer las mismas exigencias de terminado, compactación, espesor y planicidad incluidas en este numeral, pero queda a criterio del interventor la decisión sobre la frecuencia de las pruebas, la cual debe depender del tamaño de las áreas tratadas.

330.5.2.2.6 Correcciones por variaciones en el diseño o por causas no imputables al constructor

Cuando sea necesario efectuar correcciones a la capa de base granular, por modificaciones en el diseño estructural o por fuerza mayor u otras causas inequívocamente no imputables al constructor, el interventor debe delimitar el área afectada y ordenar las correcciones necesarias, por cuyo trabajo puede autorizar el pago al constructor, al respectivo precio unitario del contrato.

330.6 Medida

La base granular se debe medir según lo descrito en el numeral 300.6.1 del artículo 300. En el caso de bacheos con material granular de base, se debe aplicar lo señalado en el numeral 300.6.2 del mismo artículo. En todos los casos, la medición de volúmenes de material

colocado se debe hacer al metro cúbico (m3), aproximado a la décima (0,1).

330.7 Forma de pago

La base granular se debe pagar según lo que sea aplicable del numeral 300.7 del artículo 300.

330.8 Ítems de pago

Ítem	Descripción	Unidad	
330.1	Base granular clase A	Metro cúbico (m³)	
380.2	Base granular clase B	Metro cúbico (m³)	
330.3	Base granular clase C	Metro cúbico (m³)	
330.4	Base granular para bacheo clase A	Metro cúbico (m³)	
330.5	Base granular para bacheo clase B	Metro cúbico (m³)	
330.6	Base granular para bacheo clase C	Metro cúbico (m³)	

BASE GRANULAR CLASE B (m3)

2.3. MATERIAL SELECCIONADO TMAX 4" PARA CONFIRMACIÓN DE TERRAPLÉN Y MEJORAMIENTO DEL TERRENO (INCLUYE SUMINISTRO, EXTENDIDO, NIVELACIÓN, HUMEDECIDO Y COMPACTACIÓN)

220.1 Descripción

220.1.1 Generalidades

Este trabajo consiste en la extensión y la compactación por capas, de los materiales cuyas características se definen en el numeral 220.2 de este artículo, en zonas de dimensiones controladas que permitan, de forma sistemática, utilizar maquinaria pesada con destino a crear una plataforma sobre la que se asiente la estructura de pavimento de una carretera, de acuerdo con los documentos del proyecto. Su ejecución comprende las siguientes operaciones, previa ejecución de las obras de desmonte y limpieza, descapote y retiro del material inadecuado, demolición, drenaje y subdrenaje:

- Preparación de la superficie de apoyo para el relleno mediante escarificación, nivelación o compactación.
- Extensión de los materiales adecuados, de acuerdo con esta especificación para cada capa y zona del terraplén.
- Humedecimiento o secado de los materiales de la capa.
- Conformación y compactación de cada capa del terraplén.

220.1.2 Partes del terraplén

En los rellenos tipo terraplén se distinguen cuatro partes, cuya geometría es definida por el proyecto:

- Corona (capa subrasante): parte superior del terraplén en la cual se apoya la estructura de pavimento. Debe tener un espesor de cincuenta centímetros (50 cm), salvo cuando los documentos del proyecto indiquen un espesor diferente. Cimiento: parte inferior del terraplén en contacto con la superficie de apoyo. Debe tener un espesor mínimo de un metro (1 m) salvo cuando los documentos del proyecto indiquen un espesor diferente.
- Núcleo: parte del relleno tipo terraplén comprendida entre el cimiento y la corona.
- Espaldón: parte exterior del relleno tipo terraplén que, ocasionalmente constituye o forma parte de los taludes de este. El material del espaldón debe envolver lateralmente el núcleo protegiéndolo de los agentes externos. No forman parte del espaldón los revestimientos sin misión estructural entre los cuales se consideran plantaciones, cubierta de tierra vegetal, protecciones antierosión, etc.

220.2 Materiales

220.2.1 Requisitos de los materiales

Los materiales que se empleen para la construcción de terraplenes deben provenir de las excavaciones de la explanación, de préstamos laterales o de fuentes aprobadas por el interventor. Sus características deben estar determinadas, de acuerdo con su uso en diferentes zonas del terraplén, garantizando en todos los casos la puesta en obra en condiciones aceptables, la estabilidad de la obra y deformaciones tolerables, a corto y largo plazo para las condiciones de servicio del proyecto. Además de los suelos naturales, se pueden utilizar en terraplenes los productos procedentes de procesos industriales o de manipulación humana, siempre que cumplan las especificaciones de este artículo y que sus características fisicoquímicas garanticen la estabilidad presente y futura del conjunto. Cuando se empleen bloques de concreto reciclado como materiales para la construcción, estos se deben reducir a un tamaño máximo de veinticinco centímetros (25 cm) y no deben tener acero protuberante en más de uno coma cinco centímetros (1,5 cm) de su superficie. En todo caso se debe aplicar lo dispuesto en la legislación vigente en materia ambiental, de seguridad y salud, y de almacenamiento y transporte de productos de construcción.

El transporte y almacenamiento de todos los materiales son responsabilidad exclusiva del constructor y los debe realizar, de tal forma que no sufran alteraciones

que ocasionen deficiencias en la calidad de la obra, teniendo como referencia las especificaciones del proyecto o los requisitos establecidos en la presente especificación. Se deben cumplir los requisitos establecidos en los documentos del proyecto o en caso de no estar definidos, se deben cumplir los requisitos expuestos en el numeral 220.2.2 de este artículo.

- 220.2.2 Clasificación de materiales Desde el punto de vista de sus características intrínsecas, los materiales se clasifican en los siguientes tipos (todos los valores porcentuales indicados, salvo que se especifique lo contrario, se refieren a porcentaje en peso):
- 220.2.2.1 Suelos seleccionados Se deben considerar suelos seleccionados aquellos que cumplen las siguientes condiciones: • Contenido en materia orgánica inferior al cero coma dos por ciento (MO < 0,2 %), según la norma INV E-121 o UNE 103204. • Contenido en sales solubles en agua inferior al cero coma dos por ciento (SS < 0,2 %), según la norma INV E-158. • Tamaño máximo del agregado menor o igual a cien milímetros (Dmáx ≤ 100 mm) según la norma INV E-123. • Porcentaje que pasa el tamiz de 0,425 mm (nro. 40) menor o igual al quince por ciento (PP40 \leq 15 %) según la norma INV E-123 o que en caso contrario cumpla todas las siguientes condiciones: - Porcentaje que pasa el tamiz de 2,00 mm (nro. 10) menor del ochenta por ciento (PP10 < 80 %) según la norma INV E-123. - Porcentaje que pasa el tamiz de 0,425 mm (nro. 40), menor del setenta y cinco porciento (PP40 < 75 %) según la norma INV E-123. - Porcentaje que pasa el tamiz de 0,075 mm (nro. 200) inferior al veinticinco por ciento (PP200 < 25 %) según la norma INV E-123. - Límite líquido menor de treinta por ciento (LL < 30 %), según la norma INV E-125 (ver Figura 220-1). - Índice de plasticidad menor de diez por ciento (IP < 10 %), según las normas INV E-125 e INV E-126 (ver Figura 220-1).
- Material no colapsable según la norma INV E-157, para muestra remoldeada según el ensayo normal de compactación INV E-141, y presión de ensayo de doscientos kilopascales (200 kPa). 220.2.2.2 Suelos adecuados Se consideran suelos adecuados aquellos que no pueden ser clasificados como suelos seleccionados y que cumplen las siguientes condiciones:
- \bullet Contenido en materia orgánica inferior al uno por ciento (MO < 1 %), según la norma INV E-121 o UNE 103204.
- Contenido en sales solubles en agua inferior al cero coma dos por ciento (SS < 0,2 %), según la norma INV E-158.
- Tamaño máximo del agregado menor o igual a cien milímetros (Dmáx ≤ 100 mm) según la norma INV E-123.

- Porcentaje que pasa el tamiz de 2,00 mm (nro.10), menor del ochenta por ciento (PP10 < 80 %) según la norma INV E-123.
- Porcentaje que pasa el tamiz de 0,075 mm (nro. 200) inferior al treinta y cinco por ciento (PP200 < 35 %) según la norma INV E-123.

Límite líquido inferior a cuarenta por ciento (LL < 40 %), según la norma INV E-125 (ver Figura 220-1).

- Si el límite líquido es superior a treinta por ciento (LL > 30 %) el índice de plasticidad debe ser superior a cuatro por ciento (IP > 4 %), según las normas INV E-125 e INV E-126 (ver Figura 220-1).
- Expansión libre en edómetro inferior al dos por ciento (< 2 %), según la norma ASTM D4546.
- Material no colapsable según la norma INV E-157, para muestra remoldeada según el ensayo normal de compactación INV E-141, y presión de ensayo de doscientos kilopascales (200 kPa). 220.2.2.3 Suelos tolerables Se deben considerar como suelos tolerables aquellos que no pueden ser clasificados como suelos seleccionados ni adecuados y que cumplen las siguientes condiciones:
- Contenido en materia orgánica inferior al dos por ciento (MO < 2 %), según la norma INV E-121 o UNE 103204.
- \bullet Contenido en otras sales solubles inferior al uno por ciento (SS < 1 %), según la norma INV E-158.
- Tamaño máximo del agregado menor o igual a ciento cincuenta milímetros (Dmáx
 ≤ 150 mm) según la norma INV E-123.
- Límite líquido inferior a sesenta y cinco por ciento (LL < 65 %), según la norma INV E-125 (ver Figura 220-1).
- Si el límite líquido es superior o igual a cuarenta por ciento (LL \geq 40 %) el índice de plasticidad debe ser mayor de cero coma setenta y tres del valor resultante de la resta de veinte por ciento al límite líquido (IP > 0,73 * (LL 20%)) de acuerdo con las normas INV E-125 e INV E-126 (ver Figura 220-1) Por lo tanto, si el límite líquido está entre treinta por ciento y cuarenta porciento, (30 % \leq LL < 40 %), el índice de plasticidad debe ser menor o igual a cuatro por ciento (IP \leq 4 %), según las normas INV E-125 e INV E-126. Índice de colapso inferior al uno por ciento (< 1 %), según la norma INV E-157, para muestra remoldeada según el ensayo normal de compactación INV E-141, y presión de ensayo de doscientos kilopascales (200 kPa).

- Expansión libre en edómetro inferior al tres por ciento (< 3 %), según la norma ASTM D4546. 220.2.2.4 Suelos marginales Se deben considerar como tales los que no pueden ser clasificados como suelos seleccionados, adecuados o tolerables, por el incumplimiento de alguna de las condiciones indicadas para estos y que cumplen las siguientes condiciones:
- Porcentaje de material que pasa el tamiz de 19,0 mm (3/4 de pulgada) mayor al setenta por ciento (> 70 %) o porcentaje que pasa el tamiz de 0,075 mm (nro. 200) mayor al treinta y cinco por ciento (> 35 %), según la norma INV E-123.
- Contenido en materia orgánica inferior al cinco por ciento (MO < 5 %), según la norma INV E-121 o UNE 103204.
- Expansión libre en edómetro inferior al cinco por ciento (< 5 %), según la norma ASTM 4546.
- Límite líquido superior o igual a cuarenta por ciento (LL \geq 40 %). Si el límite líquido está entre cuarenta por ciento y sesenta y cinco por ciento (40 % \leq LL < 65 %), el índice de plasticidad debe ser menor o igual a cero coma setenta y tres del valor resultante de la resta de veinte por ciento al límite líquido (IP \leq 0,73 * (LL 20 %)) de acuerdo con las normas INV E-125 e INV E-126. Si el límite líquido es superior a noventa por ciento (LL > 90 %), el índice de plasticidad debe ser inferior a cero coma setenta y tres del valor resultante de la resta de veinte por ciento al límite líquido (IP < 0,73 * (LL 20 %)) de acuerdo con las normas INV E-125 e INV E-126 (ver Figura 220-1). 220.2.2.5 Suelos inadecuados Se deben considerar suelos inadecuados:
- Los que no se puedan incluir en las categorías anteriores (ver Figura 220-1).
- Las turbas y otros suelos que contengan materiales perecederos u orgánicos.
- Los que puedan resultar insalubres para las actividades que sobre los mismos se desarrollen. 220.2.3 Empleo según zonas del terraplén De acuerdo con las disposiciones del numeral 220.2.1 y la clasificación de materiales del numeral 220.2.2 del presente artículo, los materiales por emplear en las diferentes zonas del terraplén deben ser los siguientes, a menos que los documentos del proyecto indiquen lo contrario: 220.2.3.1 Corona Se deben utilizar suelos adecuados o seleccionados siempre que su capacidad de soporte cumpla los requisitos técnicos del proyecto y su índice CBR, correspondiente a

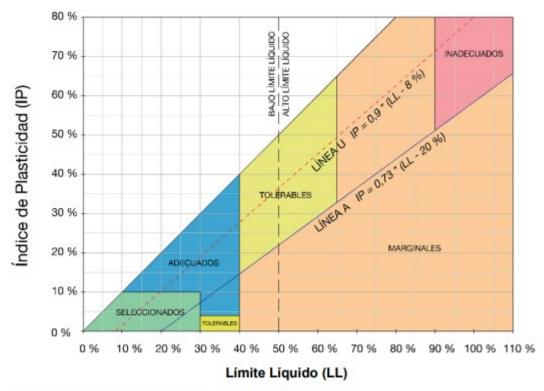


Figura 220 — 1. Criterios de clasificación de materiales según Plasticidad

Fuente: Realizada con base en Dirección General de Carreteras (2002), en Pliego de Prescripciones Técnicas Generales
para Obras de Carretera y Puentes (PG-3).

las condiciones de compactación de puesta en obra, sea como mínimo de cinco (CBR ≥ 5), según la norma INV E-148.

En esta zona no se deben usar suelos tolerables, marginales, expansivos o colapsables. Cuando bajo la corona exista material expansivo o colapsable o con contenido de sulfatos solubles, según la norma INV E-158, mayor del dos por ciento (2 %), la corona debe evitar la infiltración de agua hacia el resto del terraplén, mediante la compactación y el tipo de material o mediante la utilización de medidas complementarias.

220.2.3.2 Cimiento

En el cimiento se deben utilizar suelos tolerables, adecuados o seleccionados siempre que las condiciones de drenaje o estanqueidad lo permitan, que las características del terreno de apoyo sean adecuadas para su puesta en obra y siempre que el índice CBR, correspondiente a las condiciones de compactación de puesta en obra, sea igual o superior a tres (CBR \geq 3), según la norma INV E-148.

220.2.3.3 Núcleo

Se deben utilizar suelos tolerables, adecuados o seleccionados, siempre que su índice CBR, correspondiente a las condiciones de compactación de puesta en obra, sea igual o superior a tres (CBR \geq 3), según la norma INV E-148. La utilización de suelos marginales o de suelos con índice CBR menor de tres (CBR < 3) debe estar condicionada por problemas de resistencia, deformabilidad y puesta en obra, por lo que su empleo se debe justificar mediante un estudio especial, aprobado por el interventor, conforme a lo indicado en el numeral 220.2.4 de este artículo. La posible utilización de suelos colapsables, expansivos, con sales solubles, con materia orgánica o de cualquier otro tipo de material marginal (según la clasificación del numeral 220.2.2), se debe regir por lo indicado en el numeral 220.2.4 de este artículo.

220.2.3.4 Espaldones

Se deben utilizar materiales que satisfagan las condiciones que defina el proyecto, en cuanto a impermeabilidad, resistencia, peso estabilizador y protección frente a la erosión. No se deben usar en estas zonas suelos marginales expansivos o colapsables, según lo definido en el numeral 220.2.4 de este artículo. Cuando en el núcleo exista material expansivo o colapsable o con contenido de sulfatos solubles, según la norma INV E-158, mayor del dos por ciento (2 %), los espaldones deben evitar la infiltración de agua hacia el núcleo bien por la naturaleza y la compactación del material o mediante la adopción de medidas complementarias.

220.2.3.5 Materiales estabilizados

En el cimiento, núcleo y corona del terraplén, se pueden emplear materiales estabilizados o mejorados, mediante métodos técnicamente reconocidos que cuenten con especificaciones técnicas del Instituto Nacional de Vías (INVÍAS). En ausencia de ellas se puede recurrir al procedimiento indicado en el numeral 101.1 del artículo 101, Documentos de referencia y consulta, siempre y cuando los procedimientos de estabilización, mejora o secado cuenten con el aval del interventor. En todo caso, se debe verificar que se cumplan las especificaciones de desempeño de los documentos del proyecto y los requisitos de índice de CBR, expansividad y colapso descritos en los anteriores numerales. Para los materiales estabilizados o mejorados con cemento o cal se aplican, respectivamente, las disposiciones de los artículos 235, Estabilización de suelos de subrasante y terraplén con cemento, y 236, Estabilización de suelos de subrasante y terraplén con cal, de las presentes especificaciones.

220.2.4 Precauciones especiales para el uso de materiales marginales

Los suelos marginales, definidos en el numeral 220.2.2 de este artículo, se pueden utilizar en algunas zonas de la obra, siempre que su uso se justifique mediante un estudio especial, aprobado por el interventor. Este estudio de usos de materiales marginales debe contemplar explícitamente y con detalle, al menos los siguientes aspectos:

- Determinación y valoración de las propiedades que confieren al suelo su carácter marginal.
- Influencia de dichas características en los diferentes usos del suelo dentro de la obra. Posible influencia en el comportamiento o evolución de otras zonas o elementos de la obra.
- Estudio detallado donde se indiquen las características resistentes del material y los asentamientos totales y diferenciales esperados, así como la evolución futura de estas características.
- Conclusión justificada de los posibles usos del material en estudio.
- Cuidados, disposiciones constructivas y prescripciones técnicas por adoptar para los diferentes usos del suelo dentro de la obra. En ningún caso se deben emplear suelos marginales un metro (1 m) bajo el nivel superior de la corona o los taludes del terraplén. En los siguientes numerales se detallan algunas consideraciones sobre el uso de distintos tipos de suelos en los terraplenes.

220.2.4.1 Suelos colapsables

Se deben considerar suelos colapsables aquellos en los que una muestra remoldeada y compactada con la densidad y el contenido de agua del ensayo normal de compactación, según la norma INV E-141, sufra un asiento superior al uno por ciento (1 %) de la altura inicial de la muestra cuando se ensaye según la norma INV E-157 y presión de ensayo de doscientos kilopascales (200 kPa). Los suelos colapsables no se deben usar en la corona ni en los espaldones. Su uso en el núcleo y en el cimiento debe estar sujeto a un estudio especial que, teniendo en cuenta la funcionalidad del terraplén, el grado de colapsabilidad del suelo, las condiciones climáticas y de niveles freáticos, defina las disposiciones y cuidados por adoptar para su uso. Se recomienda compactar estos suelos ligeramente del lado húmedo, en relación con el contenido de agua óptimo del ensayo de compactación de referencia. No obstante, el método de compactación definitivo debe ser definido en el estudio especial aprobado por el interventor.

220.2.4.2 Suelos expansivos Se consideran suelos expansivos aquellos en los que en una muestra remoldeada y compactada con la densidad y contenido de agua

óptimos del ensayo normal de compactación, según la norma INV E-141, supere un hinchamiento libre del tres por ciento (3 %) según la norma ASTM D4546. Los suelos expansivos así definidos, no se deben utilizar en coronación ni en los espaldones ya que en estas zonas son más pronunciadas las variaciones estacionales del contenido de agua. Si resultara inevitable su empleo en el núcleo, se debe realizar un estudio especial que defina las disposiciones y los cuidados por adoptar durante la construcción, teniendo en cuenta la funcionalidad del relleno tipo terraplén, las características de permeabilidad de la coronación y espaldones, el hinchamiento libre y las condiciones climáticas. No se puede usar en ningún caso aquellos suelos cuyo hinchamiento libre, sea superior al cinco por ciento (5 %). Se recomienda compactar estos suelos ligeramente del lado húmedo, en relación con el contenido de agua óptimo del ensayo de compactación de referencia. No obstante, el método de compactación definitivo debe ser definido en el estudio especial aprobado por el interventor.

220.2.4.3 Suelos con sales solubles

La utilización de materiales con sales solubles en agua debe ser la siguiente, de acuerdo con su contenido: \bullet Menor del cero coma dos por ciento (0,2 %): utilización en cualquier zona del terraplén. \bullet Entre el cero coma dos y el uno por ciento (0,2 % - 1 %): utilización en el núcleo del terraplén, sin necesidad de tomar precauciones especiales en coronación y espaldones. \bullet Mayor del uno por ciento (1 %): se requiere un estudio especial, aprobado expresamente por el interventor de las obras.

220.2.4.4 Suelos con materia orgánica

El contenido de materia orgánica se debe determinar según la norma INV E-121 o UNE 103204. Estas normas incluyen como materia orgánica todas las sustancias oxidables existentes en la muestra ensayada, por tanto, cuando las sustancias oxidables no orgánicas puedan influir de forma importante sobre los resultados obtenidos, el interventor puede autorizar que el contenido de materia orgánica se obtenga descontando los materiales oxidables no orgánicos, determinados según el método explícitamente aprobado por este. La norma INV E-121 emplea el método de obtención por ignición, el cual en algunos materiales puede arrojar resultados mayores debido a la calcinación parcial de algunos minerales a la temperatura de ensayo. La orma UNE 103204 describe un método químico para la obtención de la materia orgánica por lo que puede ser usado en los casos en los que se sospecha menor confiabilidad de los métodos por ignición. Cuando se cuente con los resultados de ambos métodos, se debe dar prioridad a los obtenidos mediante métodos químicos. En rellenos tipo terraplén de hasta cinco metros (5 m) de altura, se puede admitir en el núcleo materiales con hasta un cinco por ciento (MO \leq 5 %)

de materia orgánica, siempre que las deformaciones previsibles se hayan tenido en cuenta explícitamente en el proyecto. Para terraplenes de más de cinco metros (5 m) de altura, el uso de suelos con porcentaje de materia orgánica superior al dos por ciento (MO > 2%) se debe justificar con un estudio especial, aprobado por el interventor. En la corona, el contenido de materia orgánica debe ser inferior al uno por ciento (MO < 1%).

220.3 Equipo

El equipo que se utilice para la construcción de terraplenes debe ser el adecuado para obtener la calidad especificada en el proyecto, en cantidad suficiente para producir el volumen establecido en el programa de ejecución detallado por concepto y ubicación, conforme al programa de utilización de maquinaria, y en cumplimiento de las exigencias de la presente especificación. Es responsabilidad del constructor su selección. Dicho equipo debe ser mantenido en óptimas condiciones de operación, durante el tiempo que dure la obra y debe ser operado por personal capacitado. Si en la ejecución del trabajo y a criterio del interventor y por instrucción de este, el equipo presenta deficiencias o no produce los resultados esperados, se debe suspender inmediatamente el trabajo, en tanto que el constructor corrija las deficiencias, lo remplace o sustituya al operador. Los atrasos en el programa de ejecución, que por este motivo se ocasionen, son responsabilidad del constructor.

220.4 Ejecución de los trabajos

220.4.1 Generalidades

Los trabajos de construcción de terraplenes se deben efectuar siguiendo los procedimientos contemplados en los documentos del proyecto puestos a consideración del interventor y aprobados por este. Su avance físico se debe ajustar al programa de trabajo. Cuando los documentos del proyecto no especifiquen procedimientos se deben entender como requisitos mínimos los dispuestos en esta especificación. Si los trabajos de construcción o ampliación de terraplenes afectan el tránsito normal en la vía o en sus intersecciones y cruces con otras vías, el constructor es responsable de tomar las medidas para mantenerlo adecuadamente. Cuando se haya programado la construcción de las obras de arte previamente a la elevación del cuerpo del terraplén, no se debe iniciar la construcción de este antes de que las alcantarillas y los muros de contención se terminen en un tramo no menor de quinientos metros (500 m) adelante del frente del trabajo, en cuyo caso se deben concluir también, en forma previa, los rellenos de protección que tales obras necesiten.

220.4.2 Preparación del terreno

Antes de iniciar la construcción de los terraplenes, deben estar terminadas las labores de desmonte y limpieza, según se especifica en el artículo 200, Desmonte y limpieza; y las demoliciones de estructuras que se requieran, según se especifica en el artículo 201, Demolición y remoción.

Se debe excavar y retirar la capa vegetal y todo material inadecuado, según el artículo 210, Excavación de la explanación, canales y préstamos. También se deben implementar las medidas de drenaje definitivo indicadas en los documentos del proyecto y de drenaje provisional contempladas por el constructor en su método constructivo. Si las condiciones del sitio requieren medidas adicionales para garantizar la estabilidad del terraplén, el interventor debe determinar los eventuales trabajos de descapote y retiro del material inadecuado, así como el drenaje del área base según los artículos 210, Excavación de la explanación, canales y préstamos; 600, Excavaciones varias; y 673, Subdrenes con geotextil y material granular. Cuando el terreno base esté limpio y drenado satisfactoriamente, se debe escarificar, conformar y compactar, de acuerdo con las exigencias de compactación definidas en la presente especificación, en una profundidad de quince centímetros (15 cm). En el caso de terraplenes cimentados sobre afirmados o pavimentos existentes, se deben escarificar al menos diez centímetros (10 cm) del material, el cual se debe reducir hasta alcanzar tamaños máximos de diez centímetros (10 cm), para luego regarse, mezclarse y compactarse. Cuando el terreno de fundación sea roca o terreno rocoso, se debe fundar el terraplén directamente sobre este, en su estado natural. En las zonas de ensanche de terraplenes existentes o en la construcción de estos sobre terreno inclinado, el talud existente o el terreno natural se debe cortar en forma escalonada, de acuerdo con los documentos del proyecto o las instrucciones del interventor, para asegurar la estabilidad del terraplén nuevo. Este procedimiento es obligatorio en pendientes transversales mayores de veinte por ciento (20 %).

Dado que las operaciones de desbroce, escarificado y escalonado de las pendientes dejan la superficie de terreno fácilmente erosionable por los agentes atmosféricos, estos trabajos no se deben llevar a cabo sino hasta el momento previsto y en las condiciones oportunas, para reducir al mínimo el tiempo de exposición, salvo que se recurra a protecciones de la superficie. Cuando lo señale los documentos del proyecto, la capa superficial de suelo existente que cumpla lo estipulado en el numeral 220.2, se debe mezclar con el material que se va a utilizar en el terraplén nuevo.

En general y especialmente en las medias laderas donde, a corto y largo plazo, se prevea la presencia de agua en la zona de contacto del terreno con el relleno, se deben ejecutar las obras necesarias, recogidas en el proyecto, para mantener drenado dicho contacto.

Si el terraplén debe ser construido sobre turba o suelos blandos, se debe asegurar la eliminación total o parcial de estos materiales. Si lo anterior fuera impráctico, se debe considerar su tratamiento previo y consolidación, o la utilización de otro medio indicado en los documentos del proyecto o propuesto por el constructor y autorizado por el interventor, que permita mejorar la calidad del soporte, con el fin de resistir los esfuerzos debidos al peso del terraplén terminado.

Si se encuentra considerado en los documentos del proyecto, la superficie de apoyo se puede preparar tendiendo directamente sobre el suelo blando uno o varios geosintéticos, encima de los cuales se debe construir el cuerpo del terraplén. La colocación de los geosintéticos se debe realizar de conformidad con los documentos del proyecto y siguiendo las disposiciones del artículo 232, Estabilización de suelos de subrasante con geotextil.

En casos especiales, cuando los terraplenes se deban construir en zonas pantanosas, se debe colocar material en una (1) sola capa hasta la elevación mínima a la cual pueda trabajar el equipo.

Por encima de dicha elevación, el terraplén se debe construir por capas que se deben compactar con los niveles de densificación señalados en el numeral 220.5.2.2. 220.4.3 Cuerpo del terraplén El interventor solo debe autorizar la colocación de materiales de terraplén cuando el terreno base esté adecuadamente preparado, según se indica en el numeral 220.4.2 de este artículo.

El constructor debe colocar estacas espaciadas a no más de veinte metros (20 m) entre sí, que delimiten el pie del terraplén, dejando puntos de referencia, tanto altimétricos como planimétricos, que permitan en cualquier momento reponer las estacas que se pierdan o deterioren. Los suelos de escasa o nula cohesión se pueden emplear en la construcción del cuerpo del terraplén, siempre que dicho material quede confinado lateralmente con suelos cohesivos y no erosionables, y que cumplan lo estipulado para suelos seleccionados o adecuados en el numeral 220.2.2, en un ancho mínimo de un metro (1 m) medido horizontalmente desde la línea de talud hacia el cuerpo del terraplén. El material del terraplén se debe colocar en capas sensiblemente paralelas y de espesor uniforme, el cual debe ser lo suficientemente reducido para que, con los equipos disponibles, se obtenga el grado de compactación exigido. Este espesor no debe ser mayor a treinta centímetros (30 cm) antes de la compactación, salvo que se garantice alcanzar las densidades de diseño y el

interventor autorice lo contrario. En todos los casos, el espesor de la capa debe ser superior a tres medios (3/2) del tamaño máximo del material a utilizar.

Los materiales de cada capa deben ser de características uniformes. No se debe extender ninguna capa, mientras no se haya comprobado que la subyacente cumple las condiciones de compactación exigidas. Se debe garantizar que las capas presenten adherencia y homogeneidad entre sí. Cuando se trate de terraplenes nuevos, cada capa debe ser extendida y compactada a todo lo ancho de la sección transversal. Es responsabilidad del constructor asegurar un contenido de agua que garantice el grado de compactación exigido en todas las capas del cuerpo del terraplén.

En los casos especiales en que el contenido de agua del material sea considerablemente mayor que el adecuado para obtener la compactación prevista, y el exceso de agua no pueda ser eliminado por el sistema de aireación, el constructor debe proponer y ejecutar los procedimientos más convenientes para reducirlo con previa autorización del interventor. Obtenido el contenido de agua más conveniente, se debe compactar de manera mecánica la capa. En los cimientos y los núcleos de terraplenes, las densidades secas que alcancen no deben ser inferiores a las mínimas exigidas, de acuerdo con el numeral 220.5.2.2.2. El trabajo se debe realizar comenzando desde los bordes del terraplén, avanzando hacia el centro con pasadas paralelas traslapadas en, por lo menos, la mitad del ancho de la unidad compactadora. En curvas peraltadas, la compactación debe comenzar en la parte baja y avanzar hacia la más alta.

Toda la superficie debe recibir el número suficiente de pasadas completas para obtener una compactación uniforme en todo el ancho del terraplén, y satisfactoria según las exigencias del numeral 220.5.2.2. Se debe conseguir que todo el perfil del relleno tipo terraplén quede debidamente compactado, para lo cual, se puede dar un sobreancho a la capa del orden de un metro (1 m) que permita el acercamiento del compactador al borde para después recortar el talud. Estos sobreanchos no se deben considerar en la medición de volúmenes para el pago.

Durante la ejecución de las obras, la superficie de las capas debe tener la pendiente transversal necesaria, en general en torno al cuatro por ciento (4 %), para asegurar la evacuación de las aguas sin peligro de erosión y evitar empozamientos. En terraplenes de más de cinco metros (5 m) de altura, y en todos aquellos casos en que sea previsible una fuerte erosión de la superficie exterior del relleno, se deben construir estructuras de conducción que lleven las aguas hasta bajantes dispuestas para controlar las aguas de escorrentía. Se debe proceder asimismo a la adopción de las medidas protectoras del entorno, previstas en los documentos del proyecto o

indicadas por el interventor, frente a la acción, erosiva o sedimentaria, del agua de escorrentía.

Las capas susceptibles de saturarse durante la vida del relleno tipo terraplén se deben construir, de acuerdo con los documentos del proyecto, con un material en el que la granulometría impida el arrastre de partículas y en el que las deformaciones que se puedan producir al saturarse sean aceptables para las condiciones de servicio definidas en dichos documentos.

Las zonas que, por su reducida extensión, su pendiente o su proximidad a obras de arte, no permitan el empleo del equipo que normalmente se esté utilizando para la compactación, se deben compactar con equipos apropiados para el caso, en tal forma que las densidades secas obtenidas no sean inferiores a las determinadas en esta especificación para la capa del terraplén que se esté compactando.

220.4.4 Corona del terraplén

Salvo que los documentos del proyecto o las especificaciones particulares establezcan algo diferente, la corona debe tener un espesor compacto de cincuenta centímetros (50 cm) construidos en, mínimo, dos capas, las cuales se conforman utilizando suelos seleccionados o adecuados, según lo establecido en el numeral 220.2.3. Los suelos se deben humedecer o airear según sea necesario, y se deben compactar mecánicamente hasta obtener los niveles señalados en el numeral 220.5.2.2.2.

Los terraplenes se deben construir hasta una cota superior a la indicada en los documentos del proyecto, en la dimensión suficiente para compensar los asentamientos producidos por efecto de la consolidación y obtener la rasante final a la cota proyectada, con las tolerancias establecidas en el numeral 220.5.2.2.2.

Si por causa de los asentamientos, las cotas de subrasante resultan inferiores a las proyectadas, incluidas las tolerancias indicadas en esta especificación, se debe escarificar la capa superior del terraplén en el espesor que apruebe el interventor y adicionar del mismo material utilizado para conformar la corona, efectuando la homogeneización, humedecimiento o secamiento y compactación requeridos hasta cumplir las cotas de subrasante. Si las cotas finales de subrasante resultan superiores a las proyectadas, teniendo en cuenta las tolerancias de esta especificación, el constructor debe retirar, a sus expensas, el espesor en exceso. Este retiro no puede afectar desfavorablemente ni el grado de compactación ni la pendiente transversal exigida a esta capa. En la corona de terraplenes, la densidad seca que se alcance con el proceso de compactación no debe ser inferior a la mínima exigida en el numeral 220.5.2.2.2.

220.4.5 Acabado

Al terminar cada jornada, la superficie del terraplén debe estar compactada y bien nivelada, con declive suficiente que permita el escurrimiento de aguas lluvias sin peligro de erosión. Con el fin de disminuir el efecto erosivo del agua sobre los taludes de los terraplenes, estos se deben proteger mediante su empradización, conforme lo establece el artículo 810, Protección vegetal de taludes, o el sistema que indiquen los documentos del proyecto y/o la especificación particular correspondiente.

220.4.6 Estabilidad

El constructor debe responder, hasta la aceptación final, por la estabilidad de los terraplenes construidos con cargo al contrato y debe sustituir, sin cargo para INVÍAS, cualquier tramo que, a criterio del interventor y por instrucción de este, presente defectos constructivos o deterioros atribuibles al descuido o negligencia del constructor o por causas distintas a las indicadas en el párrafo siguiente. Si el trabajo se ha hecho adecuadamente conforme a las especificaciones, los documentos del provecto y las instrucciones del interventor, y resultan daños causados exclusivamente por movimientos inevitables del suelo sobre el que se ha construido el terraplén, por lluvias copiosas que excedan cualquier máximo de lluvias de registros anteriores, derrumbes inevitables, terremotos, inundaciones que excedan la máxima cota de elevación de agua registrada o señalada en los planos, se deben reconocer al constructor los costos por las medidas correctivas, las excavaciones necesarias y la reconstrucción del terraplén. Estos costos no deben ser reconocidos cuando los derrumbes, hundimientos o inundaciones se deban a mala construcción de las obras de drenaje, falta de retiro oportuno de formaletas u obstrucciones derivadas de operaciones deficientes de construcción, imputables al constructor.

220.4.7 Limitaciones en la ejecución

La construcción de terraplenes solo se debe llevar a cabo cuando no haya lluvia o fundados temores de que ella ocurra y la temperatura ambiente no sea inferior a dos grados Celsius (2 °C). El interventor debe tener en cuenta la influencia de las lluvias antes de aprobar el extendido y compactación del relleno.

Se debe prohibir la acción de todo tipo de tránsito sobre las capas en ejecución, hasta que se haya completado su compactación. Si ello no resulta posible, se debe eliminar el espesor de las capas que, a criterio del interventor y por instrucción de este, haya sido afectado negativamente por el tránsito. No se debe permitir que, sobre las capas que han sido liberadas se acopie material fresco para ser trasladado a otras zonas del terraplén, en caso de que sea necesario, se deben extender plásticos para evitar saturación de la capa que ya ha sido recibida.

Los trabajos de construcción de terraplenes se deben realizar en condiciones de luz solar. Sin embargo, cuando se requiera terminar el proyecto en un tiempo especificado por INVÍAS o se deban evitar horas pico de tránsito público, el interventor puede autorizar el trabajo en horas de oscuridad, siempre y cuando el constructor garantice el suministro y la operación de un equipo de iluminación artificial que sea aprobado por este. Si el constructor no ofrece esta garantía, no se le debe permitir el trabajo nocturno y debe poner a disposición de la obra el equipo y el personal adicionales para completar el trabajo en el tiempo especificado, operando únicamente durante las horas de luz solar.

220.4.8 Manejo ambiental

En adición a los aspectos generales indicados en el artículo 106, Aspectos ambientales, todas las determinaciones referentes a la construcción de terraplenes deben ser tomadas considerando la conservación del ambiente y los recursos naturales, y las normas y disposiciones vigentes sobre los particulares. Especialmente, se debe prestar atención al correcto funcionamiento de los dispositivos de drenaje y a la protección vegetal de los taludes para evitar erosiones y arrastre de partículas sólidas.

Todas las actividades que se ejecuten en cumplimiento a esta especificación deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas actividades deben estar incluidas en los costos del proyecto, por tanto, no deben ser objeto de reconocimiento directo en el contrato.

220.5 Condiciones para el recibo de los trabajos

220.5.1 Controles

Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales:

- Verificar el estado y el funcionamiento de todo el equipo de construcción.
- Supervisar la correcta aplicación de los métodos de trabajo aceptados.
- Vigilar el cumplimiento de los programas de trabajo.
- Comprobar que los materiales por emplear cumplan los requisitos de calidad exigidos en el numeral 220.2.
- Verificar la compactación de todas las capas del terraplén.
- Realizar medidas para determinar espesores, levantar perfiles y comprobar la uniformidad de la superficie.

220.5.2 Condiciones específicas para el recibo y tolerancias

220.5.2.1 Calidad de los materiales

De cada procedencia de los suelos empleados para la construcción de terraplenes y para cualquier volumen previsto, se deben tomar cuatro (4) muestras y de cada fracción de ellas se deben determinar los parámetros indicados en los numerales $220.2.2\ y\ 220.2.3$. La totalidad de los resultados debe satisfacer las exigencias señaladas en el texto, según el tipo de suelo, so pena de rechazo de los materiales deficientes. Durante la etapa de producción, el interventor debe examinar las descargas de los materia les y debe ordenar el retiro de aquellas que, a simple vista, presenten restos de tierra vegetal, materia orgánica o tamaños superiores al máximo especificado. Además, debe efectuar las verificaciones periódicas de la calidad del material que se indican en la Tabla 220-1.

Característica	Norma de ensayo	Frecuencia
Granulometría	INV E-123	Una (1) vez por jornada
Contenido de materia orgánica	INV E-121/UNE 103204	Una (1) vez a la semana
Límite líquido	INV E-125	Una (1) vez por jornada
Índice de plasticidad	INV E-126	Una (1) vez por jornada
CBR de laboratorio, con expansión	INV E-148	Una (1) vez por semana
Ensayo de expansión libre en edómetro	ASTM D4546	Una (1) vez por semana (Nota)
Índice de colapso	INV E-157	Una (1) vez por mes
Densidad seca máxima	INV E-142	Una (1) vez por semana
Contenido de sales solubles	INV F-158	Lina (1) vez a la semana

Tabla 220 - 1. Verificaciones periódicas de calidad de los materiales

Nota: el ensayo de expansión libre se debe ejecutar semanalmente para caracterizar la expansión de los materiales marginales que se contemplen en el terraplén. En otros tipos de material su ejecución se puede reducir a una (1) vez al mes o suspender, previa aprobación del interventor.

220.5.2.2 Calidad del producto terminado

220.5.2.2.1 Acabado

Cada capa terminada de terraplén debe presentar una superficie uniforme y ajustada a la rasante y a las pendientes establecidas. Los taludes terminados no deben acusar irregularidades a la vista. Los taludes de los terraplenes deben tener una inclinación uniforme, la que en general e ser de tres a dos (3:2) (H:V), salvo indicación distinta en los documentos del proyecto. El ancho de la plataforma del terraplén a nivel de subrasante se debe ajustar a las dimensiones establecidas en los perfiles tipo del proyecto. No obstante, se puede aceptar un sobreancho de hasta cero coma quince metros (0,15 m) respecto a la línea teórica del talud, medido perpendicularmente al

plano de este. En el caso de terraplenes construidos con material rocoso, dicho sobreancho puede ser el doble del anteriormente señalado. Cuando el tamaño máximo del material rocoso no permita cumplir lo anterior, se acepta un sobreancho mayor que cero coma treinta metros (0,30 m), pero en ningún caso, superior a cero coma cincuenta metros (0,50 m). Los taludes terminados deben quedar libres de protuberancias y depresiones, deben presentar una superficie uniforme y estéticamente aceptable, y deben ser aprobados por el interventor. Los sobreanchos constructivos necesarios no deben ser objeto de pagos adicionales y su ejecución se debe hacer por cuenta y riesgo del constructor. La distancia entre el eje del proyecto y el borde del terraplén no debe ser menor que la distancia señalada en los documentos del proyecto. La cota de cualquier punto de la subrasante en terraplenes, conformada y compactada, no debe variar en más de treinta milímetros (30 mm) de la cota proyectada, medida verticalmente hacia abajo, y en ningún caso la cota de subrasante puede superar la cota del proyecto. No se tolera en las obras concluidas, ninguna irregularidad que impida el normal escurrimiento de las aguas. En adición a lo anterior, se deben efectuar las siguientes comprobaciones.

220.5.2.2.2 Compactación

Para la verificación de la compactación de cada una de las capas del terraplén, se define como lote, que se acepta o rechaza en conjunto, el menor volumen que resulte de aplicar los siguientes criterios:

- Quinientos metros (500 m) de capa compactada en el ancho total del terraplén.
- Tres mil quinientos metros cuadrados (3 500 m2) en el caso de las capas de la corona o cinco mil metros cuadrados (5 000 m2) en el resto de las capas si el terraplén tiene menos de cinco metros (5 m) de altura y de diez mil metros cuadrados (10 000 m2) en caso contrario.
- El volumen construido con el mismo material, del mismo corte o préstamo y colocado y compactado con los mismos equipos, en una jornada de trabajo. Los sitios para la determinación de la densidad seca de cada capa de terraplén en el terreno se deben elegir al azar, según la norma de ensayo INV E-730, pero de manera que se realice al menos una (1) prueba por hectómetro. Se deben efectuar, como mínimo, cinco (5) ensayos por lote. Para el control de la compactación de una capa de terraplén, se debe calcular su grado de compactación a partir de los resultados de los ensayos de densidad en el terreno y del ensayo de relaciones contenido de agua-peso unitario (ensayo de compactación), mediante la expresión que resulte aplicable entre las siguientes:
- Material sin sobretamaños:

$$GC_i = \frac{Y_{c,i}}{Y_{c,mix}} * 100 \quad [220.1]$$

Material con sobretamaños:

$$GC_i = \frac{Y_{d,i}}{CV_{d,max}} \star 100 \quad [220.2]$$

Donde: GCi, valor individual del grado de compactación, en porcentaje. yd,i, valor individual del peso unitario seco del material en el terreno, determinado por cualquier método aplicable de los descritos en las normas de ensayo INV E-161, E-162 y E-164, sin efectuar corrección por presencia de sobretamaños, de manera que corresponda a la muestra total.

γd,máx, valor del peso unitario seco máximo del material, obtenido sobre una muestra representativa del mismo, según las normas de ensayo INV E-141 (ensayo normal de compactación) o INV E-142 (ensayo modificado de compactación). Cγd,máx, valor del peso unitario seco máximo del material, obtenido sobre una muestra representativa del mismo según las normas de ensayo INV E-141 o INV E-142, y corregido por sobretamaños según la norma de ensayo INV E-143, numeral 3.1, de manera que corresponda a la muestra total.

Sobretamaños (fracción gruesa) (PFG), porción de la muestra total retenida en el tamiz de control correspondiente al método utilizado para realizar el ensayo de compactación (normas INV E-141 o INV E-142). El peso unitario seco máximo corregido del material (Cyd,máx) que se use para calcular el grado de compactación individual (GCi) se debe obtener, para cada sitio, a partir del contenido de sobretamaños (PFG) presente en ese sitio. Los documentos del proyecto, o en su defecto el interventor, deben definir el ensayo de referencia para obtener el peso unitario seco en las diferentes zonas del terraplén entre el ensayo INV E-141 y el INV E-142. En caso de omisión, se debe considerar como ensayo de referencia el INV E-142. Sin embargo, cuando se compacten suelos expansivos, se aconseja el uso del ensayo INV E-141.

Cuando se emplee el ensayo INV E-142 los criterios de aceptación deben ser los siguientes:

```
GC_i (90) \geq 90,0 % (Cimiento, espaldones y núcleo) [220.3] GC_i (90) \geq 95,0 % (Corona) [220.4] Cuando se emplee el ensayo INV E-141 los criterios de aceptación deben ser los siguientes: GC_i (90) \geq 95,0 % (Cimiento, espaldones y núcleo) [220.5] GC_i (90) \geq 100,0 % (Corona) [220.6]
```

Donde: GCl (90), límite inferior del intervalo de confianza en el que, con una probabilidad de noventa por ciento (90 %), se encuentra el valor promedio del grado de compactación del lote, en porcentaje. Se debe calcular según el numeral 107.3.1.3 del artículo 107, Control y aceptación de los trabajos, a partir de los valores individuales del grado de compactación (GCi). Las verificaciones de compactación se deben efectuar en todo el espesor de la capa que se está controlando. Los lotes que no alcancen las condiciones mínimas de compactación se deben escarificar, homogenizar, llevar al contenido de agua adecuado y se deben compactar nuevamente hasta obtener el valor de la densidad seca especificada.

220.5.2.2.3 Irregularidades

Todas las irregularidades que excedan las tolerancias de la presente especificación deben ser corregidas por el constructor, a su costa, de acuerdo con las instrucciones del interventor y hasta ser aprobadas por este.

220.5.2.2.4 Protección de la corona del terraplén

La corona del terraplén no debe quedar expuesta a las condiciones atmosféricas. Por tanto, se debe construir en forma inmediata la capa superior proyectada una vez terminada su compactación y acabado final. Es responsabilidad del constructor la reparación de cualquier daño a la corona del terraplén, por la demora en la construcción de la capa siguiente. De ser necesario, el constructor puede proteger la corona del terraplén mediante la compactación de treinta centímetros (30 cm) de material adicional sobre la corona, previa autorización del interventor, sin costo adicional para INVÍAS. Este material debe cumplir los mismos requisitos del material de la corona y debe ser provisto y removido por el constructor bajo su cuenta y riesgo.

220.6 Medida

La unidad de medida para los volúmenes de terraplenes debe ser el metro cúbico (m3), aproximado a la décima (0,1), de material compactado, aceptado por el interventor, en su posición final. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

Todos los terraplenes se deben medir por los volúmenes determinados, con base en las áreas de las secciones transversales del proyecto localizado, verificadas por el interventor antes y después de ser ejecutados los trabajos de terraplenes. Dichas áreas deben estar limitadas por las siguientes líneas de pago:

- Las líneas del terreno (terreno natural descapotado, afirmado existente, cunetas y taludes existentes).
- Las líneas del proyecto (subrasante o límite inferior de la subbase, cunetas y taludes proyectados). No debe haber medida ni pago para los terraplenes por fuera de las líneas del proyecto, efectuados por el constructor, ya sea por negligencia o por conveniencia para la operación de sus equipos. Los rellenos con materiales sobrantes de excavación o de derrumbes que se coloquen sobre taludes de terraplenes terminados no se deben medir; su conformación y compactación debe ser cubierta con los artículos 210, Excavación de la explanación, canales y préstamos; y 211, Remoción de derrumbes.

No se deben medir los terraplenes que se efectúen en trabajos de zonas laterales y las de préstamo y desecho. No se deben medir los terraplenes que haga el constructor en sus caminos de construcción y obras auxiliares que no formen parte de las obras del proyecto. Tampoco se deben medir, ni deben ser objeto de pago, los rellenos que sean necesarios para restituir la explanación a las cotas proyectadas, debido a un exceso de excavación.

220.7 Forma de pago

El trabajo de terraplenes se debe pagar al precio unitario del contrato, por toda obra ejecutada satisfactoriamente, de acuerdo con la presente especificación y aceptada por el interventor. El precio unitario debe cubrir los costos de escarificación, nivelación, conformación, compactación y demás trabajos preparatorios de las áreas en donde se haya de construir un terraplén nuevo; debe cubrir, además, colocación, conformación, humedecimiento o secamiento y compactación de los materiales utilizados en la construcción de terraplenes y, en general, todo costo relacionado con la correcta construcción de los terraplenes, de acuerdo con esta especificación, los documentos del proyecto y las instrucciones del interventor. El precio unitario debe incluir los costos de administración e imprevistos y la utilidad del constructor.

Debe haber pago separado para los diversos ítems relacionados con el desmonte y la limpieza, demolición y remoción, los cortes de los taludes en media ladera y de los terraplenes por ampliar y el drenaje de las áreas que reciben terraplenes, establecidos en los artículos 200, Desmonte y limpieza; 201, Demolición y remoción; 210, Excavación de la explanación, canales y préstamos; 600, Excavaciones varias; y 673, Subdrenes con geotextil y material granular. También debe haber pago separado para los trabajos de empradización de los taludes de los terraplenes conforme se indica en el artículo 810, Protección vegetal de taludes, para los materiales estabilizados o mejorados con cemento o cal de acuerdo a lo dispuesto en los artículos 235 y 236, así como para el suministro y colocación de los geosintéticos a los cuales se hace referencia en el numeral 220.4.2, los cuales se pagan, de acuerdo con la especificación particular establecida para ello.

Los materiales para los terraplenes y su transporte se deben medir y pagar de acuerdo con lo indicado en los artículos 210, Excavación de la explanación, canales y préstamos; y 900, Transporte de materiales provenientes de excavaciones y derrumbes, respectivamente.

Salvo que los documentos del proyecto indiquen lo contrario, se debe aplicar el mismo precio unitario a todas las partes del terraplén.

220.8 Ítem de pago

Ítem	Descripción	Unidad
220.1	Terraplenes	Metro cúbico (m³)

3. PAVIMENTO FLEXIBLE

3.1. MEZCLA DENSA EN CALIENTE TIPO MDC-19

Descripción

Este trabajo consiste en la elaboración, transporte, colocación y compactación, de una o más capas de mezcla asfáltica de gradación continua, preparada y colocada en caliente (concreto asfáltico), de acuerdo con esta especificación yde conformidad con los alineamientos, cotas, secciones y espesores indicadosen los planos o determinados por el Interventor.

La Tabla 450 - 1 relaciona tres tipos de mezclas asfálticas de gradación continua, en función del tipo de granulometría; se incluyen también las

mezclasde alto módulo, cuyo módulo resiliente, medido por medio de la norma de ensayo INV E-749 a la temperatura y frecuencia definidas para el proyecto, debe ser igual o superior a 10,000 MPa.

Tabla 450-1.. Tipos de mezclas asfálticas en caliente de gradación continua

TIPO	DENOMINACIÓN
POR TIPO DE GRANULOMETI	RIA
- Mezclas densas	MDC
- Mezclas semidensas	MSC
 Mezclas gruesas 	MGC
MEZCLAS ESPECIALES	
Mezclas de alto módulo	MAM

El presente Artículo no incluye las mezclas de reciclado en planta y en calientede pavimento asfáltico, las cuales son consideradas en el Artículo 462. La Tabla450 - 2 presenta la denominación de las capas asfálticas en función de su posición dentro de la estructura. Los documentos del proyecto establecerán lostipos y calidades de las capas asfálticas que componen la estructura.

MATERIALES

Agregados pétreos y llenante mineralRequisitos generales

Los agregados pétreos y la llenante mineral deberán satisfacer los requisitos del Artículo 400, numeral 400.2.1. Así mismo, deberán cumplir los requisitos de calidad mencionados en la Tabla 450 - 3.

Tabla 450-2. Denominación de las capas asfálticas en caliente de gradación continua

TIPO DE CAPA	DESCRIPCIÓN
Rodadura	Capa superior
Intermedia	Capa subyacente a la rodadura, en estructuras con 2 o más capas asfálticas
Base	Capa o capas subyacentes a la intermedia, en estructuras con 3 o más capas asfálticas

Agregado fino

La proporción de arena natural no podrá exceder los valores indicados en la

Tabla 450 - 4.

Llenante mineral

La llenante mineral podrá provenir de los procesos de trituración y clasificaciónde los agregados pétreos, separándose de ellos por medio de los ciclones de la planta mezcladora, o podrá ser de aporte como producto comercial, generalmente cal hidratada o cemento hidráulico. La proporción de llenante mineral y los requisitos para el mismo deberán cumplir lo mencionado en la Tabla 450 - 5.

Granulometría

La granulometría del agregado obtenido mediante la combinación de las distintas fracciones, incluido la llenante mineral, deberá estar comprendida dentro de alguna de las franjas fijadas en la Tabla 450 - 6. El análisis granulométrico se deberá efectuar de acuerdo con la norma INV E–213. Para prevenir segregaciones y garantizar los niveles de compactación y resistencia exigidos por la presente especificación, el material que produzca el Constructor deberá dar lugar a una curva granulométrica uniforme, sensiblemente paralelaa los límites de la franja por utilizar, sin saltos bruscos de la parte superior deun tamiz a la inferior del tamiz adyacente y viceversa

Tabla 450-3. Requisitos de los agregados para mezclas asfálticas en caliente de gradación continua

	NORMA DE	NIVEL DE TRÁNSITO		
CARACTERÍSTICA	ENSAYO INV	NT1	NT2	NT3
Dureza, agregado grueso (O)				
Desgaste en la máquina de los Ángeles, máximo (%)				
- Capa de: rodadura / intermedia / base, 500 revoluciones	E 210	25/25/	25/25/25	25 / 25 / 25
Degradación por abrasión en el equipo Micro-Deval,				
máximo (%)	E-238			
Resistencia mecánica por el método del 10% de finos, capa de: rodadura / intermedia / base				
- Valor en seco, mínimo (kN)	E-224			110/90/75
Coeficiente de pulimiento acelerado para rodadura, mínimo	E-232	0.45	0.45	0.45
Durabilidad (O)				
Pérdidas en ensayo de solidez en sulfato de				
magnesio, agregados fino y grueso, máximo (%)	E-220	18	18	18
Limpieza, agregado grueso (F)				
Impurezas en agregado grueso, máximo (%)	E-237	0.5	0.5	0.5
Limpieza, gradación combinada (F)				
	E-125 y	NP	NP	NP
Índice de plasticidad, máximo (%)	E 422	50	50	50
Equivalente de arena, mínimo (%) (Nota 1)	E-133	50	50	50
Valor de azul de metileno, máximo (Nota 1)	E-235	10	10	10
Geometría de las partículas, agregado grueso (F)				
Partículas planas y alargadas, relación 5:1, máximo (%)	E-240	10	10	10
Caras fracturadas, mínimo (%)				
- Una cara: rodadura / intermedia / base	E-227	75/60/-	75/75/60	85/75/60
Geometría de las partículas, agregado fino (F)				
Angularidad de la fracción fina, método A, mínimo (%)				
- Capa de: rodadura / intermedia / base	E-239	40/35/-	45/40/35	45/40/35
Adhesividad (O)				

CARACTERÍSTICA		NIVEL DE TRÁNSITO			
		NT1	NT2	NT3	
- Agregado grueso: Cubrimiento de los agregados con		Reportar			
materiales asfálticos en presencia del agua hirviendo (%)	E-757				
 Agregado fino: adhesividad de los ligantes bituminosos a los agregados finos (método riedel-weber), índice mínimo 					
	E-774		4		

Tabla 450-4. Proporción máxima de arena natural en el agregado para mezclas asfálticas en caliente de gradación continua

	NIVEL DE TRÁNSITO		
CARACTERÍSTICA	NT1	NT2	NT3
Proporción de arena natural: % de la masa total del agregado combinado	≤ 25	≤ 25	≤ 15
Proporción de arena natural: % de la masa total del agregado fino		≤ 50	

Nota 1: El equivalente de arena será el del agregado finalmente obtenido mediante la combinación de las distintas fracciones (incluido la llenante mineral), según las proporciones determinadas en la fórmula de trabajo y antesde pasar por el secador de la planta mezcladora. En caso de que no se cumpla el valor mínimo señalado en la tabla, el agregado se aceptará si su equivalentede arena, medido en las mismas condiciones, es superior a 40% y, simultáneamente, el valor de azul de metileno, determinado mediante la normade ensayo INV E- 235, es inferior a diez (10). Nota 2: La determinación del valor de azul de metileno no es obligatoria si el equivalente de arena cumple con el valor mínimo señalado en la tabla.

Tabla 450-5. Proporción y requisitos de la llenante mineral

	NORMA DE	NIVEL DE TRÁNSITO			
CARACTERÍSTICA	ENSAYO INV	NT1	NT2	NT3	
Proporción de llenante mineral de aporte: (% en masa de la llenante total) - Capa de rodadura - Capa intermedia - Capa de base Granulometría de la llenante mineral de aporte: - % que pasa tamiz 425 µm (No. 40) - % que pasa tamiz 150 µm (No. 100) - % que pasa tamiz 75 µm (No. 200)	E -215		≥ 25 ≥ 25 - 100 > 90 > 75	≥ 50 ≥ 50 ≥ 25	
Densidad bulk (g/cm³)	E-225		0.5 a 0.8		
Vacíos de la llenante seca compactado (%)					

El tipo de mezcla asfáltica en caliente por emplear dependerá del tipo y Tabla 450-7. Tipo de mezcla por utilizar en función del tipo y espesor compacto de la capa

TIPO DE CAPA	ESPESOR COMPACTO (mm)	TIPO DE MEZCLA
	30 – 40	MDC-10
Rodadura	40 – 60	MDC-19, MSC-19
Intermedia	> 50	MDC-25, MSC-25
Base	> 75	MSC-25, MGC-38, MGC-25
Alto módulo	60 - 130	MAM-25
Bacheos	50 – 75 > 75	MSC-25, MGC-25 MSC-25, MGC-38, MGC-25

del espesor compacto de la capa asfáltica y se definirá en los documentos del proyecto, siguiendo los criterios de la Tabla 450 - 7.

Material bituminoso

El material bituminoso para elaborar la mezcla en caliente será seleccionadoen función de:

Características climáticas de la zonaTipo de carga

Condiciones de operación de la carretera

Los documentos del proyecto deben indicar el tipo de asfalto por utilizar encada capa del pavimento. El tipo de asfalto puede ser:

Asfalto convencional, con denominaciones 40-50, 60-70 u 80-100 según se

definen en el Artículo 410

Asfalto modificado con polímeros con tipo II (IIa y IIb), tipo III y tipo V segúnse definen en el articulo 414.

En términos generales, se podrán tomar como guía para la selección del tipo de asfalto las indicaciones de la Tabla 450 - 8; los asfaltos deberán cumplir conlos requisitos de calidad establecidos en los Artículos 410 o 414, según corresponda.

Tabla 450-8. Tipo de asfalto por emplear en mezclas asfálticas en caliente de gradación continua

		NT 1		NT 2			NT 3		
TIPO DE	TEMPERA			TURA MEDIA ANUAL DE LA R			region (° C)		
CAPA	> 24	15-24	< 15	> 24	15-24	< 15	> 24	15-24	< 15
							40-50		
							60-70	40-50	
Rodadura e		60-70			60-70		0	60-70	60-70
Intermedia		u			u	80-	Tipo II	0	80-100
	60-70	80-100	80-100	60-70	80-100	100	(a o b)	Tipo II	o
				60-70	60-70			60-70	
Base		NA		u	u	80-	60-70	u	80-100
Alto									
Módulo	Módulo		NA		Tipo V				

Aditivos mejoradores de la adherencia entre los agregados y el asfalto Cuando se requieran, deberán cumplir con los requisitos del Artículo 412. Los aditivos por emplear deberán ser recomendados y suministrados por el Constructor y su dosificación y dispersión homogénea deberán tener la aprobación del Interventor.

El Constructor deberá garantizar que su incorporación no producirá ningún efecto nocivo a los agregados, al ligante asfáltico o a la mezcla. Cualquier efecto adverso en el comportamiento del pavimento que se derive del empleo del aditivo, será de responsabilidad exclusiva del Constructor, quien deberá efectuar todas las reparaciones que requiera la mezcla compactada, sin costoadicional para el Instituto Nacional de Vías, de acuerdo con las instrucciones del Interventor.

Aditivos para modificar la reología

En caso de que el Constructor proponga la incorporación de productos modificadores de la reología de una mezcla en caliente elaborada con cementoasfáltico convencional, fibras, por ejemplo, deberá presentar los estudios técnicos que determinen su dosificación, así como la del ligante utilizado, de manera que el comportamiento de la mezcla sea semejante al que se obtendría al emplear un cemento asfáltico modificado con polímeros. Su uso deberá contar con la aprobación del Interventor.

EQUIPO

Al respecto, se considerará lo que resulte aplicable de lo indicado en el Artículo

400. Para la compactación, se deberán poner a disposición de los trabajos, como mínimo, un (1) compactador vibratorio de rodillos metálicos o mixto y uno (1) de llantas neumáticas.

EJECUCION DE LOS TRABAJOS

Explotación de materiales y elaboración de agregados

Rige lo establecido en el Artículo 105, "Desarrollo y control de los trabajos",numeral 105.13.3.

Diseño de la mezcla y obtención de la fórmula de trabajoGeneralidades

Rige todo lo que resulte aplicable en el numeral 400.4.2 del Artículo 400.

Diseño de la mezcla

Las mezclas en caliente objeto del presente Artículo se diseñarán por el método

Marshall, siguiendo los pasos descritos en la Tabla 450 - 9.

Tabla 450-9. Pasos a seguir para el diseño de mezclas asfálticas en caliente de gradación continua

PASOS	DESCRIPCIÓN	NUMERAL
Diseño preliminar	- Estabilidad y flujo Marshall - Propiedades volumétricas	450.4.2.2.1
Verificación del diseño preliminar	 Adherencia Resistencia al ahuellamiento Módulo resiliente Resistencia a la fatiga 	450.4.2.2.2

Diseño preliminar

Los criterios para la definición preliminar del porcentaje óptimo de asfalto de la

mezcla son los indicados en la Tabla 450 - 10.

Verificación del diseño preliminar

El diseño preliminar que cumpla los requisitos de la Tabla 450 - 10 se deberá someter a las pruebas de verificación relacionadas en la Tabla 450 - 11 y cumplir los requisitos allí establecidos. La verificación se deberá adelantar en la secuencia indicada en esta tabla; las probetas se elaborarán con la mezcla definida como óptima en el diseño preliminar mencionado en el numeral anterior.

Adherencia

Si la mezcla no cumple con el requisito, se deberá incrementar su adhesividad hasta que cumpla con el mismo, empleando un aditivo mejorador de adherencia y/o una llenante mineral apropiado.

Tabla 450-10. Criterios para el diseño preliminar de la mezcla asfáltica en caliente de gradación continua por el método Marshall

			MEZCLAS DENSAS, SEMIDENSAS Y GRUESAS				
CARACTERÍSTICA		NORMA ENSAYO	CA	MEZCLA DE ALTO			
		INV	NT1	NT2	NT3	MÓDULO	
Compactación (golpes/cara)			50	75 (112)	75 (112)	75	
Estabilidad mínima	a (N)		5,000	7,500 (16,875)	9,000 (33,750)	15,000	
Flujo(mm)			2.0 a 4.0	2.0 a 4.0	2.0 a 3.5		
(Nota 2)		E-748		(3.0 a 6.0)	(3.0 a 5.3)	2.0 a 3.0	
Relación Estabilida Flujo (kN/mm)	ad /	(E-800) (Nota 1)	2.0 a 4.0	3.0 a 5.0 (4.5 a 7.5)	3.0 a 6.0 (4.5 a 9.0)		
Vacíos con aire	Rodadura	E-736	3.0 a 5.0	3.0 a 5.0	4.0 a 6.0	NA	
	Intermedia	o E-	4.0 a 8.0	4.0 a 7.0	4.0 a 7.0	4.0 a 6.0	
(Va),%	Base	799	NA	5.0 a 8.0	5.0 a 8.0	4.0 a 6.0	
Vacíos en los	T. Máx. 38 mm		13.0			-	
agregados minerales	T. Máx. 25 mm			14.0			
(VAM), %	T. Máx. 19 mm						
mínimo	T. Máx. 10 mm	E-799					
Vacíos llenos de as	falto (VFA), %	E-799	65 a 80	65 a 78	65 a 75	63 a 75	
Relación Llenante efectivo, en peso	/ Ligante	E-799		1.2 a 1.4			
Concentración de llenante, valor máximo		E-745	Valor crítico				
Evaluación de propiedades de empaquetamiento por el método Bailey		-	Reportar				
Espesor promedio asfalto, mínimo μπ		E-741	7.5				

Tabla 450-11. Verificación del diseño Marshall

	NORMA		
PROPIEDAD	DE ENSAYO	VALOR	APLICABILIDAD
Adherencia: Resistencia retenida, % mínimo	E-725	80	Todas las mezclas
Resistencia a la deformación plástica: velocidad máxima de deformación en el intervalo de 105 a 120 minutos, µm/min.			
- Temperatura media anual del aire > 24°C	E-756	15	- Tránsito NT3: para capas de
Módulo resiliente, MPa Mezclas de alto módulo compactadas con 75 golpes por cara, valor mínimo a 20° C		10,000	- Mezclas de alto módulo
- Otras mezclas	E -749	(Nota 1)	
 Leyes de fatiga Mezclas de alto módulo: ensayo a 20 °C y 30 Hz, ε₆ mínimo (μm/m) 	E-808	100	- Obligatorio para mezclas de alto módulo
- Otras mezclas	E-784 E-808	(Nota 1)	- Opcional para otras mezclas, según documentos del proyecto

Resistencia a la deformación plástica

Para el control de la resistencia de la mezcla a la deformación plástica se podrán emplear otros métodos de pista de ensayo de laboratorio contemplados en la normaeuropea EN-12697-22, caso en el cual los criterios de aceptación se deberán definircon base en especificaciones internacionales de comprobada aceptación.

Módulo resiliente

La determinación del módulo resiliente es obligatoria para las mezclas de alto módulo. Así mismo, los documentos del contrato pueden establecer la necesidad deefectuar ensayos de módulo resiliente para otras mezclas, y fijar valores mínimos omáximos para ellas. Los ensayos se realizarán bajo condiciones de densidad,

temperatura y frecuencia representativas de las condiciones reales de operación delpavimento, las cuales deberán estar estipuladas en los documentos técnicos del proyecto. Las probetas que se sometan a este ensayo deberán ser elaboradas con una mezcla sometida a envejecimiento previo según la norma de ensayo AASHTO R-30. Si este valor de módulo no se cumple, será necesario rediseñar la mezcla hasta lograr su cumplimiento. Alternativamente, el módulo podrá ser determinado mediante alguno de los procedimientos de ensayo definidos en la norma europea EN-12697-26, cuyo resultado debe ser equivalente al definido para la norma INV E-749 (10,000 MPa, para mezclas de alto módulo). En este caso, se deberán utilizarequivalencias internacionalmente comprobadas entre los resultados de los ensayos; las probetas deberán ser acondicionadas en las mismas condiciones descritas en elpárrafo anterior.

Leyes de fatiga

La determinación de la ley de fatiga es obligatoria para las mezclas de alto módulo.Los documentos del contrato pueden establecer que otras mezclas óptimas sean verificadas con la medida de sus leyes de fatiga, aplicando alguno de los procedimientos de ensayo de las normas INV E-784 o E-808; también, se podrán emplear otros de reconocida aceptación, como los descritos en la norma europea EN-12697-24. Los ensayos se realizarán bajo condiciones de densidad, temperatura y frecuencia representativas de las condiciones reales de operación del pavimento, las cuales deberán estar estipuladas en los documentos técnicos del proyecto. Las probetas que se sometan a este ensayo deberán ser elaboradas con una mezcla sometida a enveiecimiento previo según la norma de ensayo AASHTO R-30. Aunquelos resultados de los ensayos de fatiga no tienen por finalidad la aceptación o el rechazo de la mezcla por parte del Interventor, salvo en el caso de las mezclas de alto módulo y en aquellas que indiquen los documentos del proyecto, el Constructordeberá asegurar que las leyes de fatiga de las mezclas que elabore sean adecuadaspara las necesidades de tránsito del proyecto donde se utilizará, por cuanto será de su entera y única responsabilidad cualquier deterioro prematuro atribuible exclusivamente a la fatiga de las capas asfálticas, durante el período de garantía de estabilidad de la obra.

Ajuste de la fórmula de trabajo

La fórmula de trabajo establecida en el laboratorio se podrá ajustar con los resultados de las pruebas realizadas durante la fase de

experimentación. Igualmente, si durante la ejecución de las obras varían la procedencia o las características de alguno de los componentes de la mezcla o se rebasan las

tolerancias granulométricas establecidas en este Artículo, se requerirá el estudio deuna nueva fórmula de trabajo.

Preparación de la superficie existente

La mezcla no se extenderá hasta que se compruebe que la superficie sobre la cual se va a colocar tenga la densidad apropiada y las cotas indicadas en los planos o definidas por el Interventor. Todas las irregularidades que excedan de las tolerancias establecidas en la especificación respectiva deberán ser corregidas de acuerdo con lo establecido en ella. Si la extensión de la mezcla necesita riegos previos de imprimación o de liga, ellos se realizarán conforme lo establecen los Artículos 420 y421, respectivamente. Antes de aplicar la mezcla, se verificará que haya ocurrido elcurado del riego previo, no debiendo quedar restos de fluidificante ni de agua en lasuperficie. Si hubiera transcurrido mucho tiempo desde la aplicación del riego, se comprobará que su capacidad de liga con la mezcla no se haya mermado en forma perjudicial; si ello ha sucedido, el Constructor deberá efectuar un riego adicional deadherencia, en la cuantía que fije el Interventor. Si la pérdida de efectividad del riego anterior es imputable al Constructor, el nuevo riego deberá realizarlo sin costoadicional para el Instituto Nacional de Vías. Las excavaciones para bacheo, así comolas operaciones de relleno con los materiales adecuados para restablecer el nivel actual, se ejecutarán de acuerdo con las indicaciones del Artículo 465 para la excavación y de los Artículos que correspondan a los materiales empleados en el relleno de la misma. Si la superficie sobre la cual se va a colocar la mezcla corresponde a un pavimento asfáltico antiguo que, de acuerdo con los estudios delproyecto o el criterio del Interventor, requiere un fresado previo, éste se realizará conforme se establece en el Artículo 460.

Fase de experimentación

Rige lo indicado en el numeral 400.4.3 del Artículo 400.

Aprovisionamiento de los agregados

Los agregados se suministrarán fraccionados y se manejarán separados hasta su introducción en las tolvas en frío. El número de fracciones deberá ser tal que sea posible, con la instalación que se utilice, cumplir las tolerancias exigidas en la granulometría de la mezcla. Cada fracción

será suficientemente homogénea y se deberá poder acopiar y manejar sin peligro de segregación, observando las precauciones que se detallan a continuación. Cuando la mezcla asfáltica se vaya a elaborar en una planta del tipo tambor secador- mezclador no se permitirá, por ningún motivo, realizar una predosificación de las fracciones de los agregados pétreos, antes de su vertimiento en las tolvas de agregados en frío de la planta.

Cada fracción del agregado se acopiará separada de las demás, para evitarintercontaminaciones. Si los acopios se disponen sobre el terreno natural, no se utilizarán los quince centímetros (15 cm) inferiores de los mismos. Los acopios se construirán por capas de espesor no superior a un metro y medio (1.5 m), y no pormontones cónicos. Las cargas del material se colocarán adyacentes, tomando las medidas oportunas para evitar su segregación. Cuando se detecten anomalías en elsuministro, los agregados se acopiarán por separado, hasta confirmar su aceptabilidad. Esta misma medida se aplicará cuando se autorice el cambio de procedencia de un agregado.

Fabricación de la mezcla asfáltica

La carga de las tolvas en frío se realizará de forma que éstas contengan más del cincuenta por ciento (50 %) de su capacidad, pero sin rebosar. En las operaciones de carga se tomarán las precauciones necesarias para evitar segregaciones o contaminaciones. La alimentación del agregado fino se realizará en dos (2) tolvas, así éste sea de un tipo único. Las aberturas de salida de las tolvas en frío se regularánen forma tal, que la mezcla de todos los agregados se ajuste a la fórmula de obra de la alimentación en frío. El caudal total de esta mezcla en frío se regulará de acuerdo con la producción prevista, debiéndose mantener constante la alimentacióndel secador. Los agregados se calentarán antes de su mezcla con el asfalto. El secador se regulará de forma que la combustión sea completa, indicada por la ausencia de humo negro en el escape de la chimenea. Siempre que se presenten signos de avería en el sistema de combustión, si ocurre combustión incompleta o seadvierte alguna contaminación por combustible en los agregados o en la mezcla, se detendrá la producción hasta que se identifiquen y corrijan las causas del problema.

Si el polvo mineral recogido en los colectores cumple las condiciones exigidas a la llenante y su utilización está prevista, se podrá introducir en la mezcla; en caso contrario, se deberá eliminar. El tiro de aire en el secador se deberá regular de formaadecuada, para que la cantidad y la

granulometría de la llenante recuperada sean uniformes. La dosificación de la llenante de recuperación y/o el de aporte se hará de manera independiente de los agregados y entre sí.

En las plantas de tipo discontinuo, se deberá comprobar que la unidad clasificadoraen caliente proporcione a las tolvas en calientes agregados homogéneos; en caso contrario, se tomarán las medidas necesarias para corregir la heterogeneidad.

Los agregados preparados como se ha indicado anteriormente, y eventualmente lallenante mineral seco, se pesarán exactamente y se transportarán al mezclador en las proporciones determinadas en la fórmula de trabajo. Después de haber

introducido en el mezclador los agregados y la llenante, se agregará automáticamente el material bituminoso calculado para cada bachada, el cual se deberá encontrar a la temperatura adecuada, y se continuará la operación de mezcladurante el tiempo especificado. La temperatura del material bituminoso en el instante de la mezcla depende de la relación viscosidad – temperatura, siendo una temperatura conveniente aquella a la cual el ligante presenta una viscosidad entre ciento cincuenta y trescientos centistokes (150–300 cSt), siendo preferible que se encuentre entre ciento cincuenta y ciento noventa centistokes (150–190 cSt).

El volumen de materiales en el mezclador no será tan grande que sobrepase los extremos de las paletas, cuando éstas se encuentren en posición vertical, siendo recomendable que no supere los dos tercios (2/3) de su altura, de forma que se logre una envuelta completa y uniforme para los tiempos de mezclado establecidosen la fórmula de trabajo.

Todos los tamaños del agregado deberán estar uniformemente distribuidos en la mezcla recién elaborada y sus partículas total y homogéneamente cubiertas de ligante. La temperatura de la mezcla recién elaborada no excederá de la fijada durante la definición de la fórmula de trabajo.

En caso de utilizar adiciones al ligante o a la mezcla, se cuidará su correcta dosificación y su distribución homogénea, así como la conservación de sus características iniciales durante el proceso de fabricación.

Se rechazarán todas las mezclas heterogéneas, carbonizadas o sobrecalentadas, lasmezclas con espuma, o las que presenten indicios

de contaminación o humedad. En este último caso, se retirarán los agregados de las correspondientes tolvas en caliente. También, se rechazarán aquellas mezclas en las que la envuelta no sea perfecta. Siempre que se emplee un silo para el almacenamiento de la mezcla elaborada, ésta se deberá verter dentro de aquel tomando las precauciones necesarias para que no se ocasione segregación. En el instante de la descarga del silo a las volquetas, se procurará realizarla con la mayor rapidez, con el fin de disminuir la posibilidad de segregación en los platones de las volquetas, ya que de esta manera se reduce la acción de rodamiento de la mezcla cuando fluye hacia ellos. En ese momento se deberá verificar la temperatura, con el fin de impedir el despacho a la obra de mezclas con temperaturas inferiores a las definidas como apropiadas para la extensión y para la compactación durante la fase de experimentación.

Transporte de la mezcla

La mezcla se transportará a la obra en volquetas carpadas, hasta una hora del día en que las operaciones de extensión y compactación se puedan realizar correctamente con luz solar. Sólo se permitirá el trabajo en horas de la noche si, a juicio del Interventor, existe una iluminación artificial que permita la extensión y la compactación de manera adecuada. Durante el transporte de la mezcla se deberántomar las precauciones necesarias para que al descargarla en el equipo de transferencia o en la máquina pavimentadora, su temperatura no sea inferior a la mínima que se determine como aceptable durante la fase de experimentación.

Planicidad

La superficie acabada no podrá presentar zonas de acumulación de agua, ni irregularidades mayores de diez milímetros (10 mm) en capas de rodadura o quince milímetros (15 mm) en capas de base o intermedias y bacheos, cuando secompruebe con una regla de tres metros (3m), según la norma de ensayo INV E- 793; la regla se colocará tanto paralela como perpendicularmente al eje de la vía, en los sitios que escoja al azar el Interventor, los cuales no podrán estar afectados por cambios de pendiente. Las zonas que presenten deficiencias de este tipo deberán ser fresadas y repuestas por el Constructor, sin costo adicional para el Instituto Nacional de Vías, y a plena satisfacción del Interventor. El material fresadoserá de propiedad del Constructor.

Textura

Las medidas de textura se realizarán a los pocos días de terminada la capa, empleando el método descrito en la norma de ensayo INV E-791. El número mínimode puntos a controlar por lote será de tres (3), que se ampliarán a cinco (5) si la textura obtenida en uno de los tres (3) primeros es inferior a la especificada. Dichospuntos se elegirán al azar, de acuerdo con la norma INV E-730. La profundidad media de textura del lote no podrá ser menor al mínimo admisible que se defina enlos documentos del proyecto, el cual no podrá ser inferior a 0.35. Ningún valor individual podrá ser inferior en más de veinte por ciento (20 %) al promedio mínimo exigido y no podrán existir áreas con evidencias indudables de segregación. Si estereguisito no se cumple, la capa de rodadura correspondiente al lote controlado deberá ser levantada mediante fresado y repuesta a satisfacción del Interventor, sincosto adicional para el Instituto Nacional de Vías, quedando el material fresado de propiedad del Constructor. Alternativamente y a opción del Constructor, y si no existen problemas de gálibo o de sobrecargas estructurales, éste podrá colocar unacapa adicional de una mezcla del mismo tipo con el correspondiente riego de liga, sin costo adicional para el Instituto Nacional de Vías, del mismo espesor compacto que la anterior, cumpliendo todos los requisitos de calidad de esta especificación.

Resistencia al deslizamiento

Una vez transcurridos, como mínimo, treinta (30) días de la puesta en servicio, se harán las determinaciones de la resistencia al deslizamiento sobre mezclas densas en caliente construidas para servir como capas de rodadura. Debido a que la resistencia al deslizamiento se encuentra relacionada directamente con la seguridadde los usuarios, los puntos para su determinación en cada lote no se elegirán al azar, sino que serán ubicados por el Interventor en los lugares que considere más sensibles al deslizamiento vehicular en condición de superficie húmeda. Las medidasse realizarán con el péndulo británico, en acuerdo con la norma de ensayo INV E- 792, en tres (3) puntos por lote en zonas en tangente y en uno (1) por cada curva horizontal y por cada zona singular (glorieta, intersección, zona de frenado, etc.) incluida dentro del lote y ninguna de ellas podrá presentar un valor inferior al límiteindicado en la Tabla 450 - 15, de acuerdo con el tránsito de diseño y el tipo de sección.

En caso de que se presenten valores menores, el Interventor realizará medidas adicionales para delimitar perfectamente el área deficiente, la cual deberá ser corregida por el Constructor, sin costo adicional para el Instituto Nacional de Vías. Para ello, la capa de mezcla densa en caliente

correspondiente al lote controlado deberá ser levantada mediante fresado y repuesta a satisfacción del Interventor, sincosto adicional para el Instituto Nacional de Vías, quedando el material fresado de propiedad del Constructor. Alternativamente y a opción del Constructor, y si no existen problemas de gálibo o de sobrecargas estructurales, éste podrá colocar una capa adicional de una mezcla del mismo tipo, sin costo adicional para el Instituto Nacional de Vías, de cincuenta milímetros (50 mm) de espesor compacto, cumpliendo todos los requisitos de calidad de esta especificación. El riego de liga que se deba colocar para adherir las capas deberá ejecutarlo en acuerdo al Artículo421, sin costo adicional para el Instituto Nacional de Vías. La resistencia aldeslizamiento se puede verificar también con dispositivos de rueda parcialmente bloqueada (norma de ensayo INV E-815). En tal caso, la especificación particular indicará el equipo autorizado, así como los valores mínimos por alcanzar, los cualesdeberán ser, cuando menos, equivalentes a los señalados en la Tabla 450 - 15 parael péndulo británico.

Tabla 450-15. Valores mínimos admisibles del coeficiente de resistencia al deslizamiento con el péndulo británico

	COEFICIENTE DE			
TIPO DE CAPA	RESISTENCIA AL DESLIZAMIENTO, MÍNIMO			
	NT1	NT2	NT3	
Glorietas; curvas con radios menores de				
200 metros; pendientes ≥ 5 % en				
longitudes de 100 metros o más;				
intersecciones; zonas de frenado	0.50	0.55	0.60	
Otras secciones	0.45	0.50	0.50	

Regularidad superficial

El Índice Internacional de Rugosidad (IRI) se comprobará de manera continua en toda la longitud de la obra y en cada carril, antes del recibo definitivo de la misma. Para los efectos de aceptación del pavimento terminado, este Artículo establece quela determinación del IRI se deberá realizar, únicamente, con procedimientos de medida de precisión o con equipos de referencia inercial. Las medidas de precisión se podrán adelantar con mira y nivel, de acuerdo con el procedimiento indicado en la norma de ensayo INV E-794 o con un perfilómetro pivotante de alta precisión, norma de ensayo INV E-814.

Si se opta por el equipo de referencia inercial, éste se deberá validar previamente con uno de precisión en un tramo de prueba de longitud no menor de doscientos metros (200 m). El equipo de referencia inercial se deberá operar de acuerdo con lanorma ASTM E 950.

Para efectos de la evaluación con fines de recibo, las medidas se harán en cada unode los carriles del pavimento construido y los valores del Índice Internacional de Rugosidad (IRI) se presentarán en m/km, en tramos consecutivos de cien metros (100 m) por carril, con la excepción que se cita en el párrafo siguiente. Un conjuntode cinco (5) tramos constituirá un lote.

No habrá exigencia sobre el cumplimiento de regularidad superficial en tramos queincluyan singularidades, entendiendo por tales todas aquellas alteraciones del perfillongitudinal de la carretera que incrementen el IRI y no provengan de deficiencias constructivas, como pueden ser intersecciones con otras vías, puentes, pozos de inspección, reductores de velocidad, etc., los cuales será definidos por el Interventor,

con su ubicación respectiva (carril y abscisa), antes de proceder a la determinacióndel índice internacional de rugosidad (IRI).

Se entenderá que la superficie del pavimento tiene una regularidad superficial aceptable, si a lo largo de la longitud evaluada en cada carril se satisfacen los valoresindicados en la Tabla 450 - 16.

Si la proporción de hectómetros donde los resultados de la regularidad superficial (IRI) exceden los límites especificados no es superior a veinte por ciento (20 %) deltotal del lote, el Interventor delimitará los sectores relevantes en el incumplimiento y ordenará su corrección mediante fresado y la colocación de una nueva capa de mezcla asfáltica. Los espesores por fresar y reponer en cada tramo serán establecidos por el Interventor y todos los costos que impliquen estas correcciones, deberán ser asumidos por el Constructor. El material fresado será de propiedad delConstructor.

Si la proporción de hectómetros donde los resultados de IRI exceden los límites especificados es mayor a veinte por ciento (20 %) del total del lote, toda la longitudde éste deberá ser fresada y repuesta en el mismo espesor. El fresado, traslado y disposición del material demolido y la reconstrucción de la capa, con la calidad exigida por el presente Artículo, serán de cargo del Constructor. El material demolidoserá de propiedad del Constructor. Éste, a su vez, no podrá invocar las reparaciones o reconstrucciones debidas a deficiencias en la regularidad superficial, como causalpara incumplir el programa de trabajo.

Tabla 450-16. Valores máximos admisibles de IRI (m/km)

	PAVIMENTOS DE					
PORCENTAJE DE HECTÓMETROS	CONSTRUCCIÓN NUEVA Y REHABILITADOS EN ESPESOR > 10 cm			PAVIMENTOS REHABILITADOS EN ESPESOR ≤ 10 cm		
	NT1	NT2	NT3	NT1	NT2	NT3
40	2.4	1.9	1.4	2.9	2.4	1.9
80	3.0	2.5	2.0	3.5	3.0	2.5
100	3.5	3.0	2.5	4.0	3.5	3.0

Construcción de capas de renivelación

Las mezclas para la construcción de capas de renivelación de un pavimentoexistente, deberá cumplir los mismos requisitos que se exigen cuando se coloca como capa de base, si su espesor compacto es mayor o igual a setenta y cinco milímetros (75 mm). En caso contrario, deberá cumplir los requisitos exigidos a la capa intermedia.

Correcciones por variaciones en el diseño o por causas no imputables al Constructor

Cuando sea necesario efectuar correcciones a las capas asfálticas por modificacionesen el diseño estructural o por fuerza mayor u otras causas inequívocamente no imputables al Constructor, el Interventor delimitará el área afectada y ordenará lascorrecciones necesarias, por cuyo trabajo autorizará el pago al Constructor, al respectivo precio unitario del contrato.

Medidas de deflexión

El Interventor verificará la solidez de la estructura construida realizando medidas dedeflexión con la viga Benkelman, de acuerdo con la norma de ensayo INV E-795. Los resultados de las medidas, que se realizarán en tresbolillo cada 20 metros, no constituirán base para aceptación o rechazo de la capa construida, sino que serviránal Instituto Nacional de Vías para verificar la homogeneidad de la estructura que seconstruye y realizar los ajustes que pudieran resultar necesarios al diseño estructural del pavimento.

MEDIDA

Rige lo descrito en el Artículo 400 y, en particular, en el numeral 400.6.2. Para bacheos, se aplicará lo especificado en el numeral 400.6.3 del mismo Artículo.

FORMA DE PAGO

Rige lo descrito en el numeral 400 y en particular en el 400.7.3 del Artículo 400.

ITEM DE PAGO

MDF 25 M3

3.2. RIEGO IMPRIMACION CON EMULSION ASFÁLTICA

DESCRIPCIÓN

Este trabajo consiste en el suministro, transporte, eventual calentamiento y aplicación uniforme de una emulsión asfáltica o un asfalto líquido sobre unasuperficie granular terminada, previamente a la extensión de una capa asfáltica o un tratamiento bituminoso. El riego también se podrá aplicar a bermas construidasen material granular y a sus taludes. El trabajo incluye también, eventualmente, el suministro y la aplicación de un agregado fino para la protección de la superficie imprimada. El trabajo incluye también el suministro y la aplicación de un agregado fino sobre la imprimación para absorber eventuales excesos del material de imprimación o para la protección de la superficie imprimada, cuando se requiera.

MATERIALES

Material bituminoso

Los documentos del proyecto indicarán cuál de los materiales bituminosos indicados

en la Tabla 420 - 1 deberá ser utilizado para el riego de imprimación.

Tabla 420-1.. Materiales bituminosos para el riego de imprimación

TIPO DE MATERIAL	DENOMINACIÓN	REQUISITOS	
	Emulsión asfáltica catiónica de rotura lenta tipo CRL-0		
Emulsión asfáltica	Emulsión asfáltica catiónica de rotura lenta tipo CRL-1	Artículo 411	
Asfalto líquido	Asfalto líquido MC-30	Artículo 416	

Cuando se emplee emulsión asfáltica catiónica de rotura lenta tipo CRL-1, ésta se deberá diluir en agua hasta que tenga una concentración aproximada de cuarenta por ciento (40 %).

Agregado de protección

El agregado de protección de la superficie imprimada será arena natural, arena de trituración o una mezcla de ambas, la cual estará exenta de polvo, terrones de arcilla u otros materiales objetables. Sus características deberán ser las mismas que se exigen a los agregados para el sello de arena asfalto, según el Artículo 432. 4.2.3.

EQUIPO

Además de lo que se indica a continuación, rige lo descrito en el numeral 400.3 delArtículo 400. Para los trabajos de imprimación se requieren elementos mecánicos delimpieza, carrotanques irrigadores de asfalto y, eventualmente, distribuidores mecánicos de agregados.

Equipo de limpieza

El equipo para la limpieza previa de la superficie donde se aplicará el riego de imprimación estará constituido por una barredora mecánica de tipo rotatorio y/o unasopladora mecánica, autopropulsadas o arrastradas por tractor, equipos que se utilizarán siempre que las autoridades ambientales autoricen su empleo. Como equipo adicional, se podrán utilizar compresores y escobas, y demás implementos que el Interventor autorice y que cumplan las disposiciones ambientales vigentes.

Equipo de irrigación

El carrotanque irrigador deberá aplicar el producto asfáltico para imprimación de manera uniforme y constante, a la temperatura apropiada, sin que lo afecten la carga, la pendiente de la vía o la dirección del vehículo. Sus dispositivos de irrigación deberán proporcionar una distribución transversal adecuada del ligante. El vehículodeberá estar provisto de un velocímetro calibrado en metros por segundo (m/s), o pies por segundo (pie/s), visible al conductor, para mantener la velocidad constantey necesaria que permita la aplicación uniforme del asfalto en sentido longitudinal. Elcarrotanque deberá aplicar el producto asfáltico a presión y para ello deberá disponer de una bomba de impulsión, accionada por motor y provista de un indicadorde presión. También,

deberá estar provisto de un termómetro para el ligante, cuyoelemento sensible no se podrá encontrar cerca de un elemento calentador. Para áreas inaccesibles al equipo irrigador y para retoques y aplicaciones mínimas, se usará una caldera regadora portátil, con sus elementos de irrigación a presión, o una extensión del carrotanque con una boquilla de expansión que permita un riego uniforme. Por ningún motivo se permitirá el empleo de regaderas u otros dispositivos de aplicación manual por gravedad. Equipo de distribución de agregado Para la aplicación del agregado de protección se emplearán distribuidores mecánicos, acoplados a un camión o autopropulsados, que permitan la aplicación homogénea de la arena. Previa autorización del Interventor, el agregado se podrá aplicar manualmente en sitios puntuales o de difícil acceso para el equipo de distribución mecánica.

EJECUCIÓN DE LOS TRABAJOS

Preparación de la superficie existente Antes de autorizar los trabajos de imprimación, se comprobará que la superficie sobre la cual se va a efectuar la aplicación cumpla con todos los requisitos especificados en cuanto a conformación, compactación y acabado de la capa granular a la cual corresponda. Si la superficie presenta fallas o imperfecciones, el Constructor procederá a corregirlas a entera satisfacción del Interventor. En el momento de la aplicación, la capa granular sobrela cual se va a aplicar la emulsión no debe tener exceso de humedad; la humedad debe ser cercana a la óptima de compactación, e idealmente debe estar dos (2) puntos de porcentaje por debajo de la misma. La superficie que ha de recibir el riegode imprimación se limpiará cuidadosamente de polvo, barro seco, suciedad y cualquier material suelto que pueda ser perjudicial, utilizando el equipo de limpieza aprobado. En lugares inaccesibles a los equipos mecánicos, se permitirá el uso de escobas manuales. La limpieza debe dejar a la vista las partículas gruesas sin soltarlas ni aflojarlas.

Determinación de la dosificación del ligante

La dosificación del ligante depende del tipo de producto bituminoso, del sistema deaplicación y de las características superficiales de la capa granular por imprimar.

El Constructor establecerá la dosificación definitiva del ligante con base en los resultados de las aplicaciones iniciales y será, salvo instrucción en contrario, aquellaque sea capaz de absorber la capa que se imprima, en un lapso de veinticuatro (24)horas, logrando una penetración no inferior a 5 mm. Esta dosificación deberá contarcon la aprobación del Interventor.

Como guía, las cantidades de producto bituminosopor aplicar pueden estar entre los siguientes valores, para una concentración del 60

%: .85 a 2.25 l/m2; La cantidad de ligante residual no será inferior a quinientos gramos por metro cuadrado (500 g/m2).

Aplicación del ligante bituminoso

La superficie deberá ser humedecida mediante un rociado ligero previamente al riegode imprimación. Este humedecimiento no debe ser excesivo; los vacíos entre partículas no deben quedar llenos de agua. La aplicación del ligante se hará de manera suave y uniforme. Se evitarán los traslapos en las juntas transversales quegeneran una dosificación excesiva de imprimante, para lo cual se colocarán tiras depapel u otro material adecuado en las zonas de iniciación o terminación del trabajo, de manera que el riego comience y termine sobre éstas.

La temperatura de aplicación deberá ser tal, que la viscosidad del producto asfáltico

se encuentre entre cinco y veinte segundos Saybolt- Furol (5 sSF a 20 sSF).

Antes de iniciar cada jornada de trabajo, se deberá verificar la uniformidad del riego. Si fuere necesario, se calentarán las boquillas de irrigación antes de cada descarga.La bomba y la barra de distribución se deberán limpiar al término de la jornada. Enlas zonas donde se presenten insuficiencias o excesos de material bituminoso, el Constructor corregirá la anormalidad mediante la adición de ligante o agregado de protección, respectivamente, a satisfacción del Interventor y sin costo adicional parael Instituto Nacional de Vías. En los casos en que, por las condiciones de la obra, sedeba efectuar el riego por franjas, deberá existir una pequeña superposición del mismo a lo largo de la junta longitudinal. No se permitirá transitar sobre la superficieimprimada ni la colocación de capas de rodadura, base asfáltica o tratamientos, hasta que lo autorice el Interventor. Elementos tales como sardineles, árboles, vallasy similares, susceptibles de ser manchados por el ligante, deberán ser protegidos adecuadamente por parte del Constructor, antes de aplicar el riego.

Determinación de la dosificación del agregado de protección

La dosificación del agregado de protección será la mínima necesaria para absorber los excesos de ligante o para garantizar la protección de la imprimación, cuando la capa imprimada deba soportar la acción del tránsito automotor. En ningún caso, la cantidad de agregado excederá de seis litros por metro cuadrado (6 l/m2). La dosificación definitiva del agregado de protección se establecerá como resultado dela aplicación de las pruebas iniciales realizadas en la obra.

Extensión del agregado de protección

La extensión eventual del agregado de protección se realizará por instrucción del Interventor, cuando sea necesario permitir la circulación del tránsito automotor sobre la imprimación o donde se advierta que parte de ella no ha sido absorbida veinticuatro horas (24 h) después de aplicado el ligante. El agregado se extenderá con el equipo aprobado y su humedad, en el momento de la aplicación, no podrá exceder de cuatro por ciento (4 %). Se deberá evitar el contacto de las ruedas del distribuidor del agregado con la imprimación sin cubrir. En caso de extender el agregado sobre una franja imprimada sin que lo hubiera sido la adyacente, se dejarásin cubrir una zona de aquella de unos quince a veinte centímetros (15-20 cm), juntoa la zona que se encuentra sin imprimar.

Control del tránsito Se prohibirá todo tipo de tránsito sobre la superficie imprimadamientras no haya sido absorbido todo el ligante o, en caso de que se haya extendidoel agregado de protección, dentro de las cuatro horas (4 h) siguientes a la aplicación de éste. Una vez permitida la circulación, la velocidad de los vehículos no deberá exceder de treinta kilómetros por hora (30 km/h).

Limitaciones en la ejecución No se permitirá la aplicación de riegos de imprimación cuando la temperatura ambiente a la sombra y la de la superficie sean inferiores a cinco grados Celsius (5° C) o haya Iluvia o fundados temores de que ella ocurra. La aplicación del riego de imprimación deberá estar coordinada con la puesta en obra de la capa superpuesta a él, de manera que el ligante no haya perdido su efectividad como elemento de unión. Cuando el Interventor lo estime necesario, se aplicará otroriego de imprimación, sin costo adicional para el INVÍAS, si la pérdida de efectividad de la imprimación anterior es imputable al Constructor. Los trabajos de aplicación del riego de imprimación se deberán realizar en condiciones de luz solar. Sin embargo, cuando se requiera terminar el proyecto en un tiempo especificado por elINVÍAS o se deban evitar horas pico de tránsito público, el Interventor podrá autorizar el trabajo en horas de oscuridad, siempre y cuando el Constructor garantice el suministro y la operación de un equipo de iluminación artificial que resulte satisfactorio para aquel. Si el Constructor no ofrece esta garantía, no se le permitiráel trabajo nocturno y deberá poner a disposición de la obra el equipo y el personal

adicionales para completar el trabajo en el tiempo especificado, operando únicamente durante las horas de luz solar.

Reparaciones Todo daño de la superficie imprimada atribuible a descuido, falta de previsión o negligencia del Constructor, deberá ser reparado por éste, sin costo adicional para el Instituto Nacional de Vías y a entera satisfacción del Interventor.

Manejo ambiental

Al respecto, regirá todo lo que resulte aplicable del numeral 400.4.7 del Artículo 400.

CONDICIONES PARA EL RECIBO DE LOS TRABAJOS

Controles Rige todo lo que resulte aplicable del numeral 400.5.1 del Artículo 400.

Condiciones específicas para el recibo y tolerancias

Calidad del producto asfáltico A la llegada de cada carrotanque al sitio de los trabajos, el Constructor deberá entregar al Interventor una certificación expedida por el fabricante de la emulsión asfáltica o del asfalto líquido, donde se indiquen lasfechas de elaboración y despacho. así como los resultados de ensayos de calidad efectuados sobre muestras representativas de la entrega, los cuales deberánsatisfacer todas las condiciones establecidas en los Artículos 411 o 416, dependiendode si el producto asfáltico es una emulsión o un asfalto líquido. El Interventor se abstendrá de aceptar el empleo de suministros de emulsión asfáltica o asfalto líquidoque no se encuentren respaldados por la certificación del fabricante. Dicha constancia no reemplazará, en ningún caso, a la ejecución de ensayos de comprobación, ni implica necesariamente la aceptación final de la entrega. Sobre muestras representativas de las diversas entregas, se efectuarán las verificaciones exigidas en el numeral 411.5.2 del Artículo 411, si se trata de una emulsión asfálticao en el numeral 416.5.2 del Artículo 416, si es un asfalto líquido.

En todos los casos, el Interventor guardará una muestra para ensayos ulteriores decontraste, por si se presentan dudas o desacuerdos entre las partes sobre los resultados iniciales. En relación con los resultados de las pruebas, no se admitirá ninguna tolerancia sobre los límites establecidos en la Tabla 411 - 1 del Artículo 411,o en la Tabla 416 - 1 del

Artículo 416, según se trate de una emulsión asfáltica o unasfalto líquido, respectivamente.

Calidad del agregado de protección

Rige lo indicado en el numeral 432.5.2.2 del Artículo 432

MEDIDA

Rige lo pertinente del numeral 400.6 del Artículo 400, y en particular lo indicado enel numeral 400.6.1.

FORMA DE PAGO

Rige lo pertinente del numeral 400.7 del Artículo 400, y en particular lo indicado enel numeral 400.7.2.

No habrá pago separado por el suministro y extensión del agregado de protección.

ÍTEM DE PAGO

Riego de imprimación con emulsión asfáltica m²

4. CONSTRUCCION DE OBRAS DE DRENAJE

4.1. EXCAVACIONES VARIAS SIN CLASIFICAR, INCLUYE RETIRO

Ver lo descrito en el ítem 1.1 del presente documento.

ÍTEM DE PAGO

Excavaciones varias sin clasificar, incluye retiro Metro cúbico (m3)

4.2. CONCRETO CLASE A (28 MPA) OBRAS DE DRENAJE 630.1 Descripción

Esta especificación consiste en el suministro de materiales, fabricación, transporte, colocación, vibrado, curado y acabado de los concretos de material cementante de tipo hidráulico, utilizados para la construcción de puentes, estructuras de drenaje, muros de contención y estructuras en general, de acuerdo con los documentos del proyecto.

Algunos elementos o estructuras de concreto deben cumplir adicionalmente las especificaciones del Instituto Nacional de Vías (INVÍAS) realizadas para un fin específico. A continuación, se presenta una lista de dichas especificaciones disponibles por tipo de estructura o elemento:

- Artículo 500, Pavimento de concreto hidráulico.
- Artículo 505, Base de concreto hidráulico.
- Artículo 510, Pavimento de adoquines de concreto.
- Artículo 620, Pilotes prefabricados de concreto.
- Artículo 621, Pilotes preexcavados.
- Artículo 632, Barandas de concreto.
- Artículo 660, Tubería de concreto simple.
- Artículo 661, Tubería de concreto reforzado.
- Artículo 671, Cunetas revestidas en concreto.
- Artículo 672, Bordillos en concreto.
- Artículo 680, Muros de tierra estabilizada mecánicamente con paneles de concreto.
- Y todas las demás estructuras de concreto estructural reglamentadas en las especificaciones INVÍAS.

30.2 Materiales

630.2.1 Concreto estructural

Está conformado por una mezcla homogénea de material cementante, agregados, agua, aditivos y eventualmente adiciones suplementarias y/o complementarias; materiales que deben cumplir los requisitos básicos que se mencionan a continuación.

630.2.1.1 Cemento hidráulico

El cemento hidráulico y su suministro deben cumplir el artículo 501, Suministro de cemento hidráulico. Se pueden utilizar cementos bajo la denominación ASTM C150 y ASTM C595.

El constructor debe presentar los resultados de todos los ensayos físicos relacionados con el material cementante, como parte del diseño de la mezcla. De igual forma, todo material cementante usado en obra debe ser de la misma marca, tipo y planta de fabricación al empleado en el diseño de la mezcla. Es posible emplear diferentes tipos de mate-rial cementante siempre que se cuente con el diseño de la mezcla, mezclas de prueba y la aprobación del interventor.

Si por alguna razón el material cementante ha fraguado parcialmente o contiene terrones del producto endurecido, no se puede utilizar. Tampoco se debe utilizar el material cementante sobrante en bultos abiertos en jornadas anteriores, cuando este sea suministrado en bolsas.

630.2.1.2 Adiciones suplementarias

Cuando la adición suplementaria es incluida como materia prima para la fabricación del clínker o incluida durante la fabricación del cemento, se debe verificar que el material cementante resultante cumpla las exigencias de la NTC 121.

En caso de que la adición suplementaria sea incluida en la elaboración del concreto por parte del constructor o proveedor del concreto, se deben presentar los resultados de todos los ensayos físicos y químicos relacionados con las adiciones suplementarias, como parte del diseño de la mezcla. Las cenizas volantes y puzolanas naturales calcinadas o crudas deben satisfacer las exigencias de la NTC 3493 (ASTM C618) o ACI 232.1R, Reporte sobre el uso de puzolanas naturales o procesadas en concreto; las escorias de alto horno la NTC 4018 (ASTM C989) o ACI 233R, Escoria en concreto y mortero; y el humo de sílice la norma ASTM C1240.

No se permite el uso de otros tipos de adiciones diferentes a las mencionadas anteriormente.

No se deben utilizar adiciones suplementarias que presenten grumos o indicios de prehidratación. Se debe garantizar que la adquisición de la adición suplementaria cumpla los requisitos legales ambientales vigentes.

630.2.1.3 Agregados

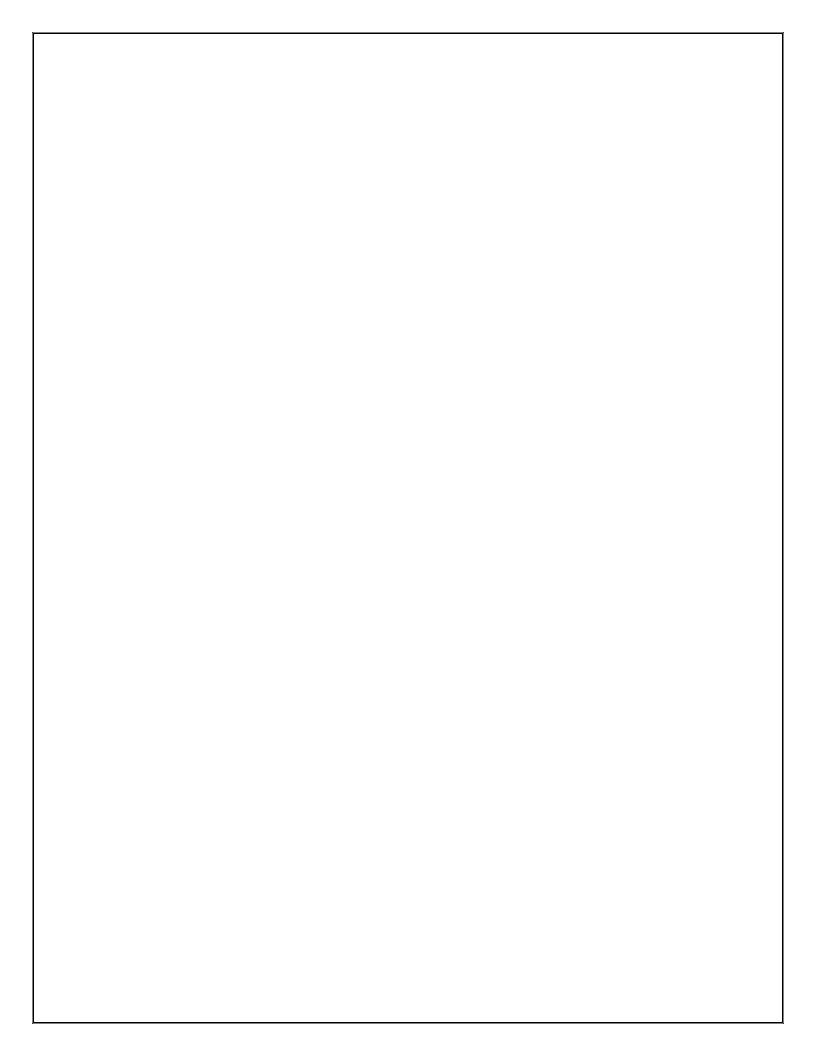
En el presente numeral, se especifican los requisitos de los agregados para concreto estructural. Se permite el uso de agregados gruesos reciclados de tipo RCD (Residuos de Construcción y Demolición) si se comprueba que el desempeño de estos es, como mínimo, igual o mejor que el de los agregados gruesos que cumplen los requisitos de este artículo y son aprobados por el interventor.

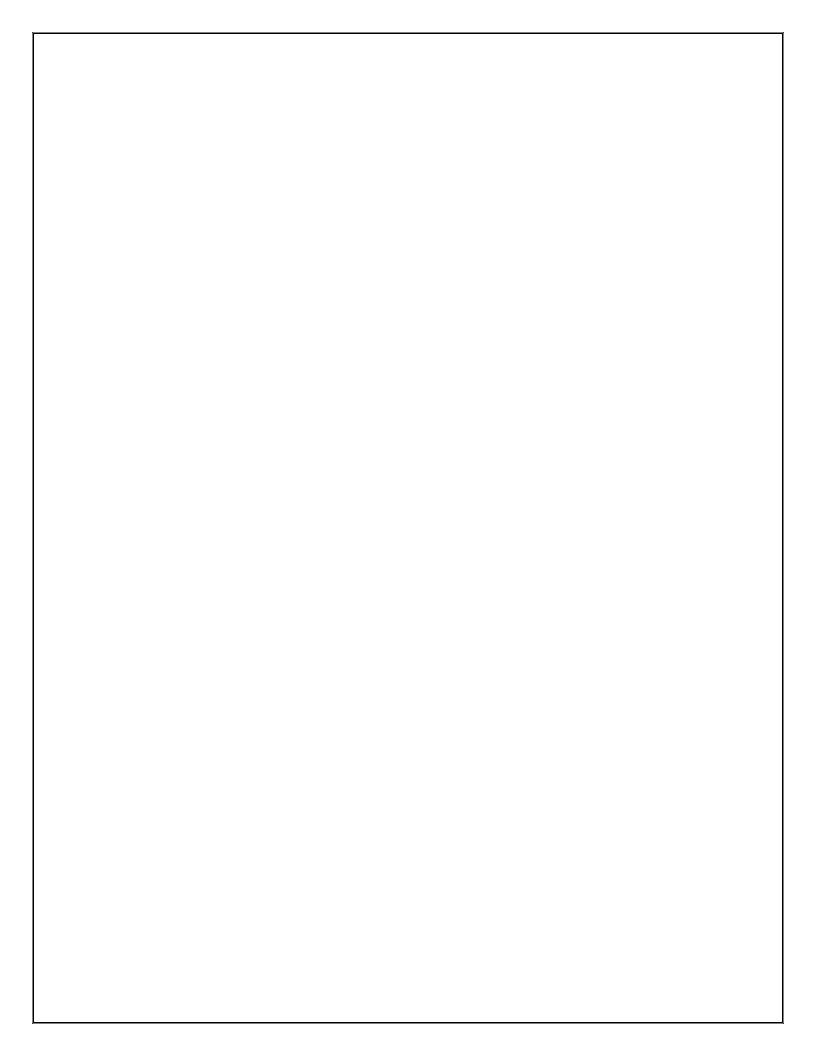
Para la elaboración del concreto estructural, la cantidad de agregado grueso reciclado por adicionar en la mezcla de concreto no debe superar el diez por ciento (10 %) en peso sobre el contenido total de agregado grueso. En todos los casos en que se use se debe demostrar que no se afectan las condiciones de durabilidad del concreto.

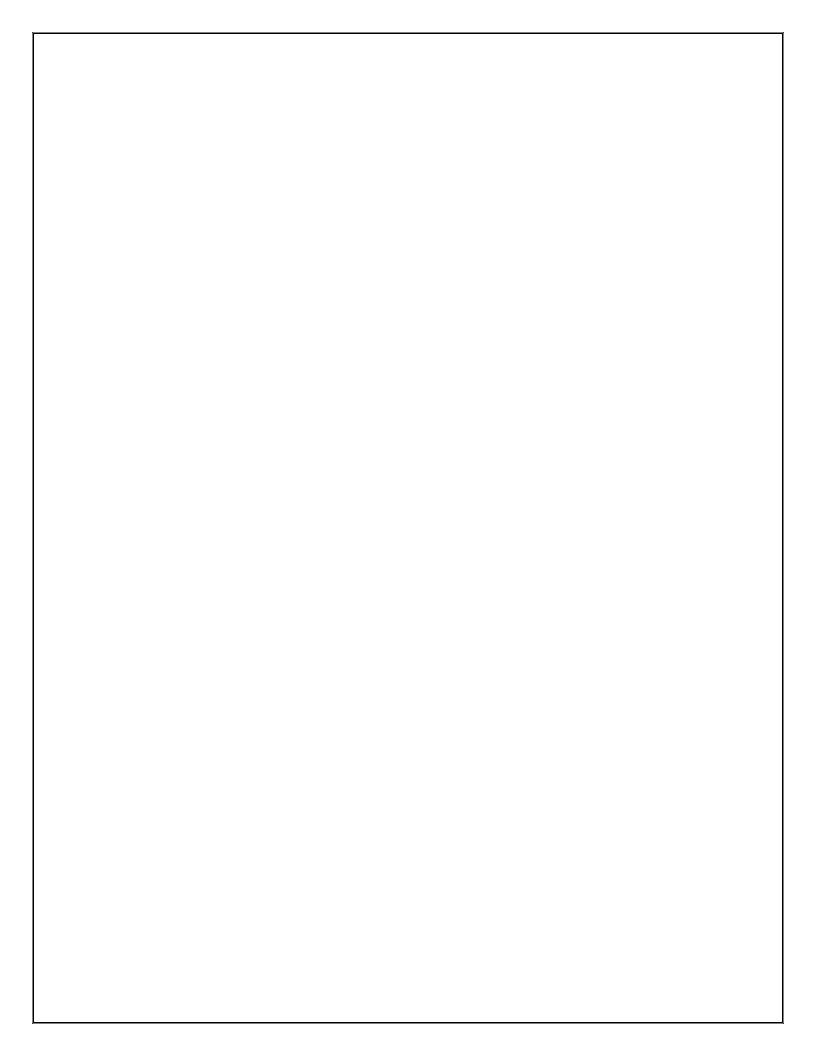
Aparte de los requisitos presentados en este numeral, durante la selección y la caracterización de los agregados, se debe realizar la evaluación de la reactividad y el diseño de la mitigación de la reacción álcali-agregado descrito en el numeral 630.2.6.1.3.

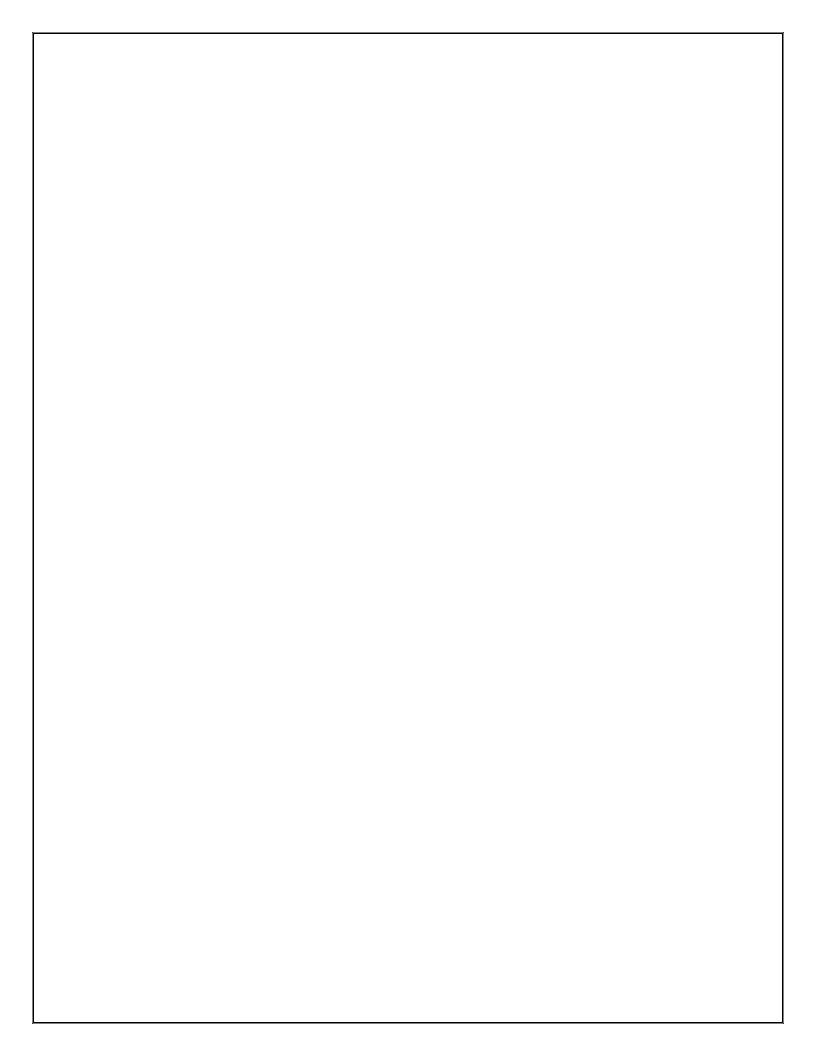
Se debe garantizar que la adquisición del agregado cumpla los requisitos legales ambientales vigentes. Los documentos como títulos, licencias y permisos se deben entregar al interventor.

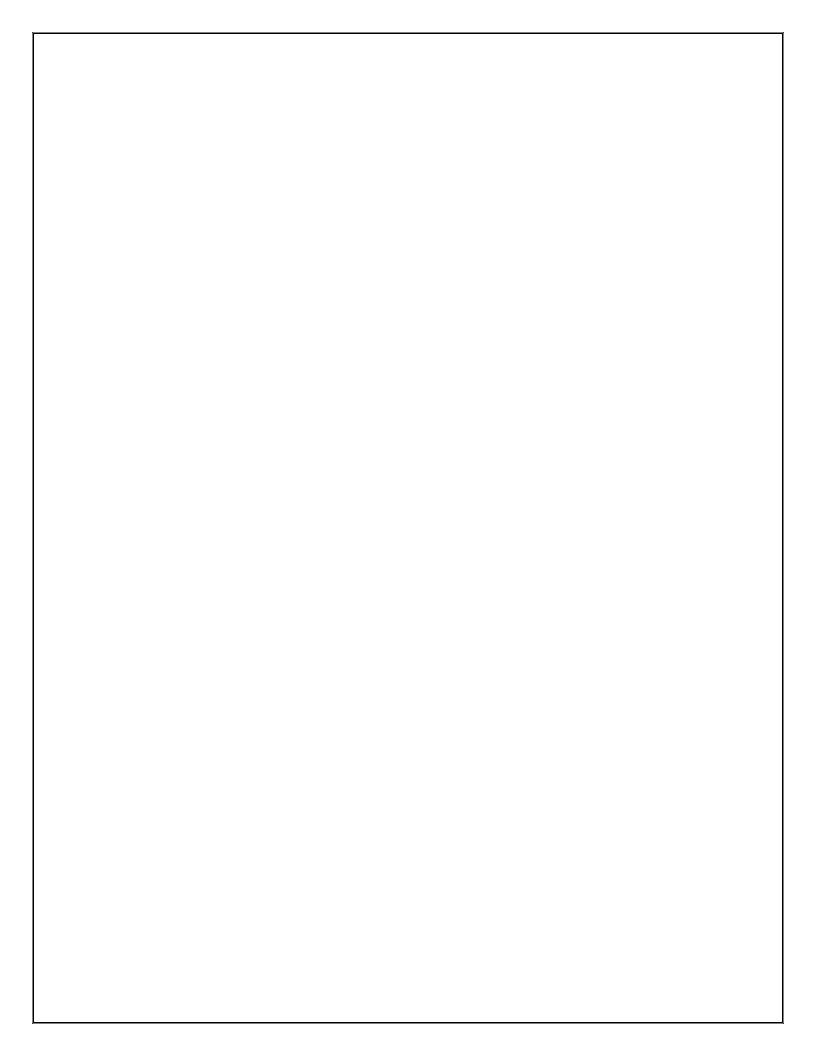
630.2.1.3.1 Agregado fino

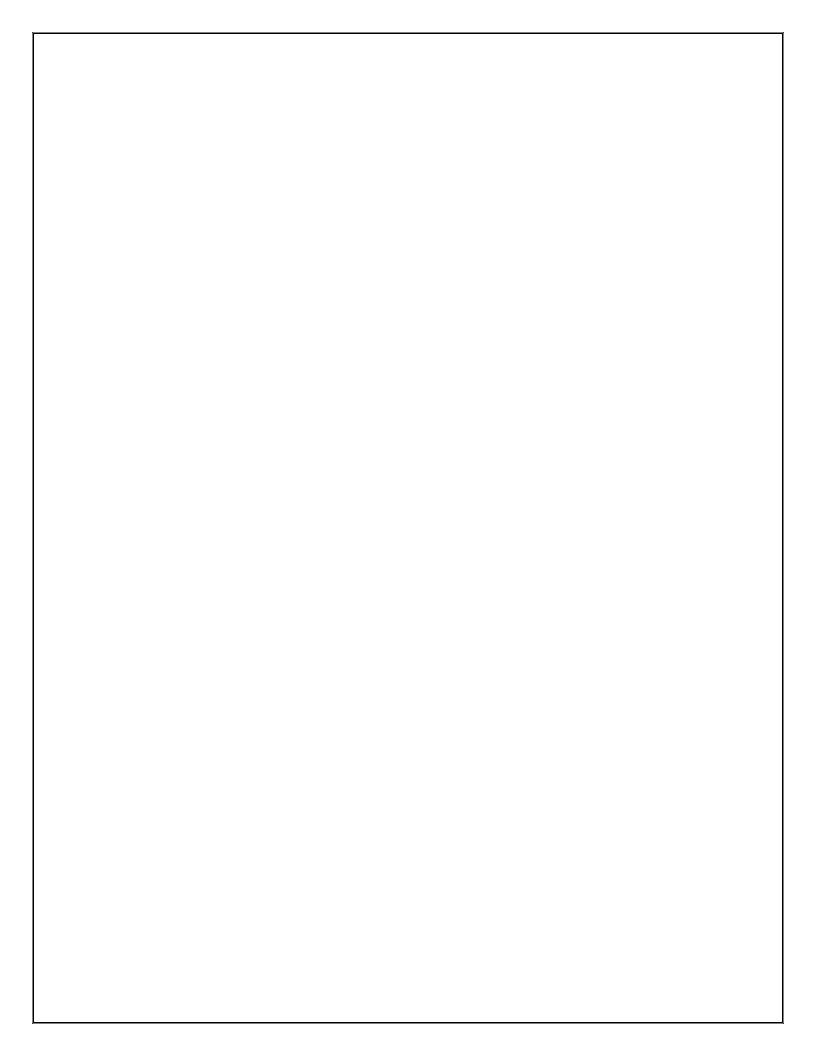

Se considera como tal, a la fracción que pase el tamiz de 4,75 mm (nro. 4). Debe provenir de arenas naturales o de la trituración de rocas, gravas, escorias siderúrgicas u otro producto que resulte adecuado, a criterio del interventor. Cuando las arenas son de origen calizo, el porcentaje de arena de trituración no puede constituir más del quince por ciento (15 %) del agregado fino, o hasta el treinta por ciento (30 %) si con un programa experimental aprobado por el interventor se demuestra que no tienen incidencia en el comportamiento del concreto en estado endurecido.

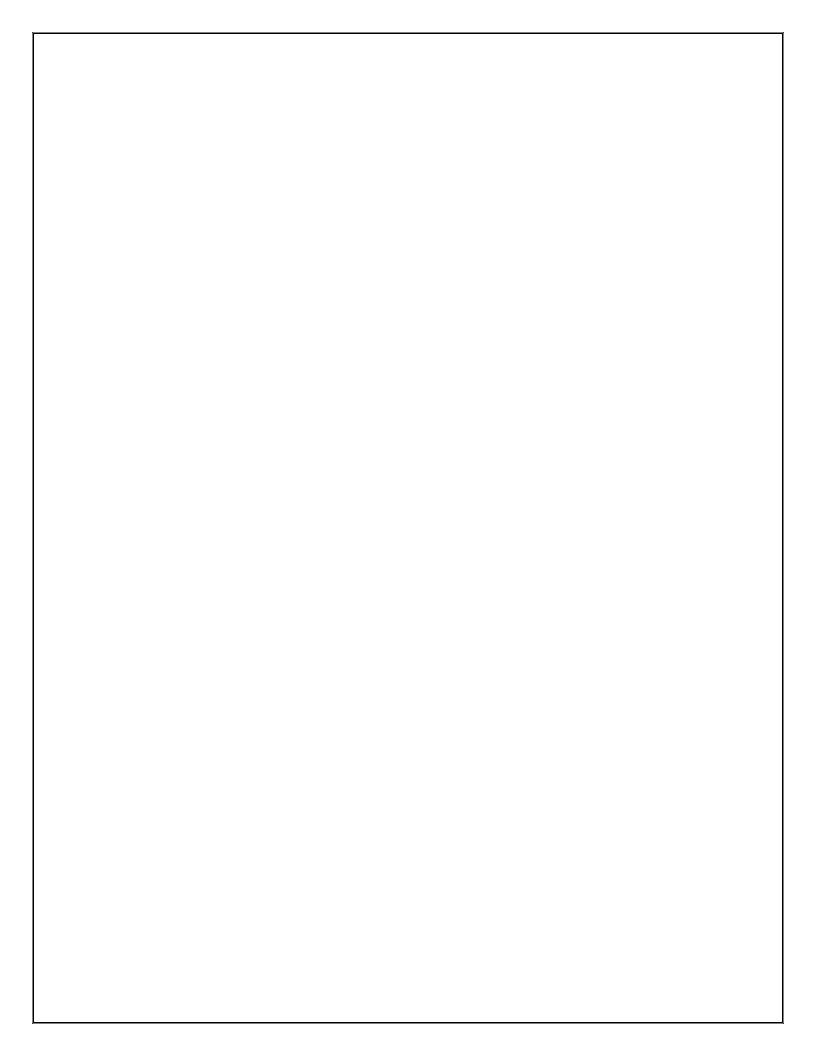

Si en la mezcla se emplean arenas provenientes de escorias siderúrgicas, se debe comprobar que no contengan silicatos inestables ni compuestos ferrosos, ni cualquier otro material que genere algún mecanismo de daño en el concreto o disminución de la resistencia.


El agregado fino debe cumplir los requisitos que se indican en la Tabla 630-1 y su gradación se debe ajustar a la indicada en la Tabla 630-2.


En ningún caso, el agregado fino puede tener más de cuarenta y cinco por ciento (45 %) de material retenido entre dos tamices consecutivos de los mostrados en la Tabla 630 - 2.


Un agregado fino que no cumpla los requisitos de granulometría y módulo de finura especificados en este numeral puede ser aceptado si se demuestra, a criterio del interventor, que hay una evidencia adecuada de comportamiento satisfactorio de concretos del mismo tipo y para el mismo uso, construidos con ese agregado.





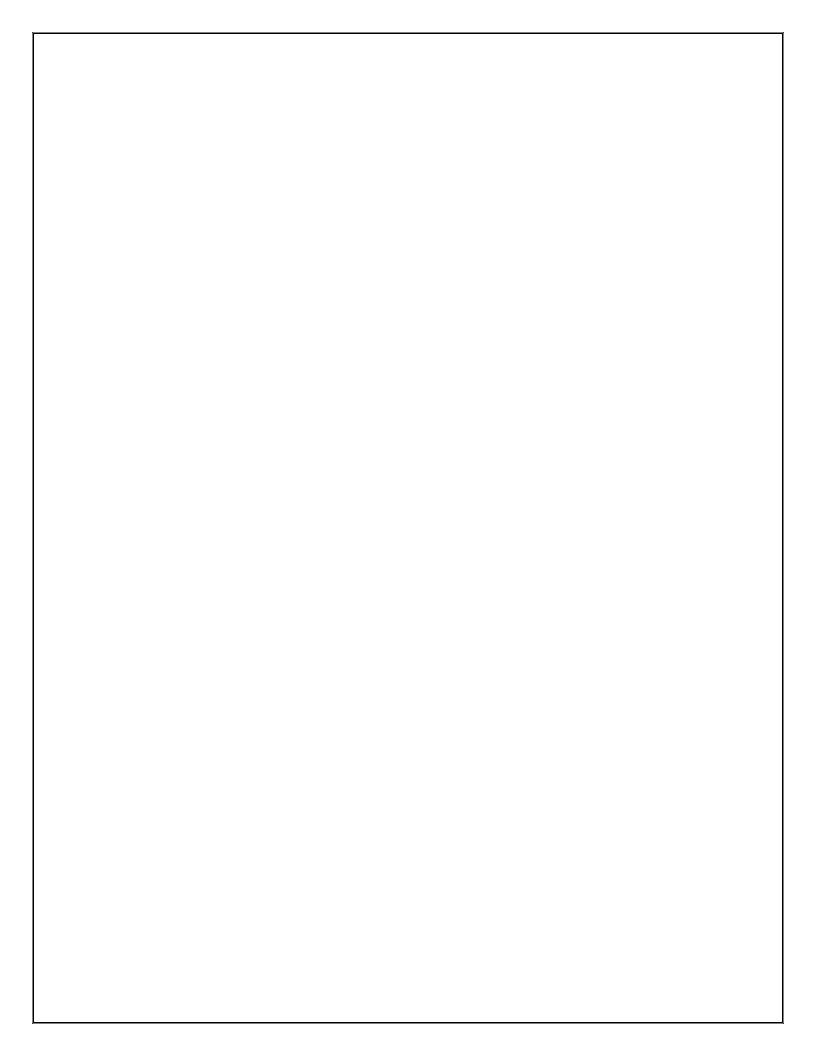


Tabla 630 - 1. Requisitos del agregado fino para concreto estructural

Característica	Norma de ensayo INV	Requisito
Composición		
Granulometría: - Análisis granulométrico de los agregados finos - Material que pasa tamiz de 0,075 mm (nro.200)	E-213 E-214	Ver Tabla 630 — 2
Módulo de finura (Nota 1)	E-213	2,3 — 3,1
Durabilidad (O)		
Pérdidas en el ensayo de solidez en sulfatos, máximo (%). (Nota 2): - Sulfato de sodio - Sulfato de magnesio	E-220	10 15
Limpieza (F)		
Terrones de arcilla y partículas deleznables, máximo (%). (Nota 3)	E-211	3
Partículas livianas, máximo (%): - Cuando la apariencia superficial del concreto sea de importancia, máximo (%) - Todos los demás concretos, máximo (%)	E-221	0,5 1,0
Contenido de materia orgánica (F)		
Color más oscuro permisible	E-212	lgual al color de referencia o de la placa orgánica nro. 3

Característica	Norma de ensayo INV	Requisito
Características químicas (O)		
Contenido de sulfatos, expresado como SO ₄ ", máximo (%)	E-233	1,2

Nota 1: adicional a esta especificación, es necesario probar el comportamiento competente del material en obras ya construidas. Durante el período de construcción no se permiten variaciones mayores de dos décimas (0,2) en el módulo de finura, con respecto al valor correspondiente a la curva adoptada para la fórmula de trabajo. Cuando se presenten variaciones superiores del módulo de finura, se debe revisar que no haya modificaciones a la curva adoptada de trabajo y se deben chequear afectaciones en los diseños. Si hay variaciones, se debe ajustar una nueva curva de trabajo y se debe corregir el diseño en caso de que haya lugar.

Nota 2: el ensayo se puede realizar con sulfato de sodio o sulfato de magnesio.

Nota 3: el porcentaje de terrones de arcilla y partículas deleznables puede ser hasta de un tres por ciento (3 %) siempre y cuando no afecte la durabilidad y la resistencia del concreto.

Si el agregado fino no cumple el requisito indicado en la Tabla 630-1 para el contenido de materia orgánica, se puede aceptar si al ser ensayado en relación con el efecto de las impurezas orgánicas sobre la resistencia del mortero, se obtiene una resistencia relativa a siete días (7 d) no menor de noventa y cinco por ciento (95 %), calculada de acuerdo con el procedimiento descrito en la norma de ensayo ASTM C87.

Tabla 630 - 2. Granulometría del agregado fino para concreto estructural

			Tar	miz (mm / U.	S. Standard)		
Total	9,5	4,75	2,36	1,18	0,600	0,300	0,150	0,075
Tipo de gradación	3/8 Pulgada	Nro. 4	Nro. 8	Nro. 16	Nro. 30	Nro. 50	Nro. 100	Nro. 200
				Pasa tam	niz (%)			
Única	100	95 — 1 00	80 — 100	50 — 85	25 — 60	5 — 30	0 — 10	0 — 3 (Nota 1 y Nota 2)

Nota 1: para concretos que no estén sometidos a abrasión, el límite para el material más fino que el tamiz de 0,075 mm (nro. 200) debe ser de máximo cinco por ciento (5 %).

Nota 2: para finos obtenidos de trituración u otros agregados reciclados, si el material más fino que el tamiz de 0,075 mm (nro. 200) compuesto de polvo de trituración, esencialmente libre de arcillas o esquistos, este límite puede ser cinco por ciento (5 %) para concretos sometidos a abrasión y máximo siete por ciento (7 %) para concretos no sujetos a abrasión.

630.2.1.3.2 Agregado grueso

Se denomina agregado grueso la porción del agregado retenida en el tamiz de 4,75 mm (nro. 4). Dicho agregado debe estar compuesto de grava, grava triturada o roca triturada o su combinación o concreto triturado fabricado con cemento hidráulico que cumpla los requisitos para el agregado de este artículo. Sus fragmentos deben ser limpios, resistentes y durables, sin exceso de partículas planas, alargadas, blandas o desintegrables. Debe estar exento de polvo, tierra, terrones de arcilla u otras sustancias objetables que puedan afectar adversamente la calidad de la mezcla. No se permite la utilización de agregado grueso proveniente de escorias de alto horno.

El agregado grueso debe cumplir los requisitos que se indican en la Tabla 630-3 y su gradación se debe ajustar a alguna de las indicadas en la Tabla 630-4. La gradación por utilizar es la especificada en los documentos del proyecto para cada tipo de concreto, cuyo tamaño máximo depende de la

estructura que se trate, la separación del refuerzo y el tipo de concreto especificado.

La curva granulométrica obtenida al mezclar los agregados grueso y fino en el diseño y construcción del concreto debe ser continua y asemejarse a las teóricas obtenidas al apli-car las fórmulas de Fuller, Bolomey o cualquier otro método validado por alguna institución técnica de reconocido prestigio nacional o internacional y aprobado por el interventor.

Optimización granulométrica: en caso de no cumplir los requisitos propuestos por algunas de las metodologías de dosificación mencionadas anteriormente, se pueden realizar optimizaciones granulométricas con base en métodos de empaquetamiento granular. El constructor debe revisar la propuesta con aprobación del interventor, mediante la elaboración de mezclas de prueba, con el fin de comprobar que las características proporcionadas en el diseño cumplan los requisitos del concreto tanto en estado fresco como en estado endurecido para el proyecto en particular.

Tabla 630 - 3. Requisitos del agregado grueso para concreto estructural

Característica	Norma de ensayo INV	Requisito
Dureza (O)		
Desgaste en la máquina de Los Ángeles, máximo (%): - En seco, 500 revoluciones, máximo (%) - En seco, 100 revoluciones, máximo (%)	E-218	40 8
Durabilidad (O)		
Pérdidas en ensayo de solidez en sulfatos, máximo (%). (Nota 1): - Sulfato de sodio - Sulfato de magnesio	E-220	12 18

Característica	Norma de ensayo INV	Requisito
Limpieza (F)		
Terrones de arcilla y partículas deleznables, máximo (%). (Nota 2)	E-211	3
Partículas livianas, máximo (%)	E-221	0,5
Geometría de las partículas (F)		
Índice de alargamiento, máximo (%)	E-230	25
Índice de aplanamiento, máximo (%)	E-230	25
Características químicas (O)		
Contenido de sulfatos, expresado como SO ₄ ", máximo (%)	E-233	1,0

Nota 1: el ensayo se puede realizar con sulfato de sodio o sulfato de magnesio.

Nota 2: para concreto arquitectónico, el límite máximo es dos por ciento (2 %).

Tabla 630 — 4. Franjas granulométricas de agregado grueso para concreto estructural

Tipo	0						Tamiz (n	Tamiz (mm / U.S. Standerd)	Standard)						
de gradación	dación	100	90	7.5	63	90	37,5	25,0	19,0	12,5	9,5	4,75	2,36	1,10	0,3
INIVÍAC	ASTM	4 Pulondas	3 ½ Puloadas	3 Puloadas	2 ½ Puloadas	2 Pulgadas	1 ½ Pulcadas	1 Pulgada	3,4 Puloada	1/2 Pulgada	3/8 Pulgada	Nro. 4	Nro.8	Nro. 16	Nro. 50
2	880				_		•	65	(%)						
	6			-							100	85 - 100	10 - 40	0 - 10	0 - 5
	88									100	90 - 100	20 - 55	5 — 30	0 - 10	0 - 5
	8									100	85-100	10 - 30	0 - 10	9-0	
AG-19	7						ì		100	90 - 100	40 - 70	0 — 15	0 - 5		
AG-25	67			-				100	90 - 100		20 - 55	0 - 10	0 - 5		
	9			-				100	90 - 100	20 - 55	0 - 15	9 - 0	ì		
AG-38	57			-		-	100	95 100		25 - 60		0 - 10	9 - 0		
	56						100	90 - 100	40 - 85	10 - 40	0 - 15	0 - 5			
	5			-		-	100	90 - 100	20 - 55	0 - 10	0 - 5				
AG-50-1	467					100	95 100		35 - 70		10 - 30	0 - 5			
AG-50-2	4			-		100	90 - 100	20 - 55	0 — 15		9 - 0	-			
AG-63-1	357			-	100	95 - 100	ì	35 — 70		10 - 30		9 - 0	ì		
AG-63-2	9				100	95 - 100	35-70	0-15		0 - 5					
	8	•		100	90 - 100	35 - 70	0 — 15	•	0 - 5	ì	ì	ì	ì		
	-	100	90 - 100		25 - 60		0 - 15		0 - 5						

El tamaño máximo nominal del agregado grueso no debe tener un valor mayor que ninguno de los siguientes:

- 1/5 de la menor separación entre los lados del encofra
- 1/3 de la altura de la losa.
- 3/4 del espaciamiento mínimo libre entre las barras o alambres individuales de refuerzo, paquetes de barras, tendones individuales, paquetes de tendones o ductos.

Los valores límite de tamaño máximo nominal se pueden omitir, si el interventor lo aprueba y el profesional facultado para diseñar la mezcla y los métodos de compactación del concreto garantizan la colocación sin hormigueros o vacíos.

630.2.1.3.3 Agregado liviano

El agregado liviano y el concreto estructural liviano deben cumplir lo requerido en la NTC 4045 (ASTM C330). Cuando el agre-gado liviano se utilice para realizar curado interno, debe cumplir lo establecido en la norma ASTM C1761.

630.2.1.3.4 Agregado para concreto ciclópeo

El agregado ciclópeo debe ser roca triturada o canto rodado de buena calidad, preferiblemente angular y su forma tendiente a ser cúbica. La elación entre las dimensiones mayor y menor de cada piedra no debe ser mayor que dos a uno (2:1).

El tamaño máximo admisible del agregado ciclópeo depende del espesor y del volumen de la estructura de la cual forma parte. En cabezales, aletas y obras similares con espesor no mayor de ochenta centímetros (80 cm) se admiten agregados ciclópeos con dimensión máxima de treinta centímetros (30 cm). En estructuras de mayor espesor se pueden emplear agregados de mayor tamaño, previa aprobación del interventor y con las limitaciones establecidas en el numeral 630.4.8.4.

El material constitutivo del agregado ciclópeo no puede presentar un desgaste mayor de cuarenta por ciento (40 %), al ser sometido a la prueba en la máquina de Los Ángeles, según la norma de ensayo INV E-219 (NTC 93).

630.2.1.4 Agua

El agua que se emplee para las mezclas de concreto hidráulico o para el curado de las estructuras de concreto, debe cumplir los requisitos de la norma ASTM C1602. No debe contener aceites, ácidos, azúcares, detergen-tes, sólidos disueltos, sales, materia orgánica o cualquier otra sustancia perjudicial para el concreto terminado.

En cualquier caso, se deben cumplir los requisitos dados en la Tabla 630 - 5 y en la Tabla 630 - 6.

Tabla 630 — 5. Requisitos para el agua de mezclado

Propiedad	Norma de ensayo	Límites
pH, minimo	NTC 3651 (ASTM D1293)	6,5
Resistencia a la compresión en cubos de mortero, porcentaje (%) mínimo en control a siete dias (7 d)	NTC 220 (ASTM C109)	90
Tiempo de fraguado, desviación respecto del tiempo de control (horas:minutos)	NTC 118 (ASTM C403)	de 1:00 inicial a 1:30 final

Para aprobar el agua con la que se piensa preparar la mezcla de concreto se deben realizar dos series de ensayos sobre cubos de mortero, según la NTC 220 (ASTM C109). En la primera serie se preparan los cubos de mortero con el agua que se desea emplear en la obra, mientras que en la segunda serie se utiliza agua destilada. Las resistencias promedio a la compresión a la edad de siete días (7 d) del mortero con el agua que se desea emplear en la obra deben ser superiores al noventa por ciento (90 %) de las obtenidas con el agua destilada.

En relación con el requisito sobre tiempo de fraguado, las medidas se realizan mediante la resistencia a penetración de morteros extraídos de muestras de concreto, elaboradas como se describió en el párrafo anterior.

Tabla 630 - 6. Límites químicos para el agua de mezclado

Contaminante	Norma de ensayo ASTM	Límite máximo (ppm) (Nota 1)
Ion Cloro (Cl ⁻)	C114	500 (Nota 2) o 1 000 (Nota 3)
Sulfatos (SO ₄ ")	C114	3 000
Álcalis como (Na ₂ O + 0,658 K ₂ O). (Nota 4)	C114	600
Sólidos totales	C1603	50 000

Nota 1: ppm corresponde a partes por millón.

Nota 2: concreto pretensado.

Nota 3: concreto reforzado.

Nota 4: se pueden emplear también las normas ASTM D4191 y ASTM D4192.

630.2.1.5 Aditivos y adiciones complementarias

Se pueden usar aditivos y adiciones complementarias de reconocida calidad que cumplan los requisitos normativos correspondientes, para modificar las propiedades del concreto, con el fin de que sea más adecuado para las condiciones particulares de la estructura a construir.

Los aditivos reductores de agua y para con-trol de fraguado deben cumplir los requisitos de la NTC 1299 (ASTM C494). Los inclusores de aire se deben ajustar a las exigencias de la norma ASTM C260. El concreto reforzado con fibras debe cumplir los requisitos de la NTC 5541 (ASTM C1116). Los pigmentos utilizados en concretos, con el propósito de producir mezclas coloreadas integralmente, deben cumplir la norma ASTM C979. Adicionalmente, se permite el uso de todos los aditivos que cumplan ACI 212.3R, Reporte de aditivos químicos para el concreto.

Su empleo se debe definir por medio de ensayos efectuados con antelación a la obra, con dosificaciones que garanticen el efecto deseado, sin perturbar las propiedades res-tantes de la mezcla.

Los aditivos y las adiciones complementarias deben estar libres de sustancias que, por su naturaleza o cantidad, afecten la resistencia o la durabilidad del concreto, armaduras, aceros de alta resistencia u otros elementos insertados.

Los aditivos que contengan altos contenidos de cloruros no deben ser adicionados al concreto reforzado, concreto preesforzado, concreto que contengan aluminio embebido o en concreto construido con encofrados permanentes de acero, a menos que se demuestre experimentalmente que no se afecta su durabilidad y sean aprobados por el interventor. También, se prohíbe el uso de aditivos ricos en álcalis solubles para la elaboración de cualquier tipo de concreto, a menos que se demuestre experimentalmente que no se afecta la durabilidad del concreto y sean aprobados por el interventor.

Para la validación de los aditivos y adiciones complementarias se deben realizar mezclas de prueba con los materiales por usar, en las cantidades establecidas para la mezcla en obra y en las condiciones específicas de sitio a las que está expuesta la estructura. Para establecer la dosis del aditivo se deben realizar mezclas de prueba con el fin de verificar el desempeño requerido. Las dosis ensayadas y aprobadas no se deben modificar a menos que se realicen nuevamente mezclas de prueba y se verifique el desempeño requerido.

Para todo aditivo o adición complementaria que se utilice como parte del diseño de la mezcla de concreto, el constructor debe presentar los resultados de todos los ensayos físicos y químicos que sean requeridos según el material y deben ser aprobados por el interventor.

El uso del aditivo es responsabilidad directa del constructor, así haya sido aprobado por el interventor.

El uso de aditivos y adiciones complementarias de cualquier naturaleza en las mezclas de concreto debe ser probado bajo las condiciones específicas del sitio de obra, de tal manera que se demuestre que no se afectan las propiedades y las características del concreto y se obtiene el desempeño deseado.

El proveedor debe suministrar un documento en donde se presenten las recomendaciones de uso del aditivo. El seguimiento, almacena-miento y demás requisitos para el uso del aditivo se deben realizar siguiendo el documento con las recomendaciones del proveedor.

630.2.2 Acero

En los documentos del proyecto se debe indicar el acero de refuerzo necesario para las diferentes estructuras de concreto. Al respecto, se deben cumplir los requisitos del artículo 640, Acero de refuerzo.

Para elementos preesforzados, el suministro, la colocación y el tensionamiento de acero de preesfuerzo, se debe dar cumpliendo a los requisitos del artículo 641, Acero de preesfuerzo.

Se deben tomar todas las medidas necesarias para evitar la corrosión del acero de refuerzo, tales como:

- Almacenar adecuadamente el acero y evitar su contacto con la humedad.
- Limitar el contenido total de cloruros en la mezcla de concreto, según las tablas de tipo de exposición y requisitos presenta-das en este artículo.
- Garantizar que los recubrimientos cumplen los requisitos mínimos de diseño.
- Dosificar mezclas con relaciones agua/material cementante (a/mc) bajas que promuevan concretos densos y de baja permeabilidad.
- En vez de acero (barras, mallas, fibras) utili-zar otros materiales que no sean afectados por los cloruros. Se debe establecer por parte del diseñador y el interventor la viabilidad de esta medida.
- Recubrir el acero con materiales que sirvan como barrera física a los agentes agre-sivos. Se debe establecer por parte del diseñador y el interventor la viabilidad de esta medida.

El concreto reforzado con fibras debe cumplir los siguientes requisitos:

Las fibras deben cumplir la norma ASTM C1116.

- Se debe aplicar el método de ensayo presentado en la norma ASTM C1609.
- El tipo de fibra, la cantidad y las características de colocación de las fibras deben ser determinadas por el diseñador, esto debe quedar registrado en los documentos del proyecto y debe ser cumplido en obra.

630.2.3 Productos para el curado del concreto

El curado del concreto debe seguir los lineamientos de la guía ACI 308R, Guía para curado del concreto.

Este se puede llevar a cabo a través de:

- Métodos que mantienen un ambiente húmedo mediante la aplicación continua o frecuente de agua por medio de inundación, rociado, nebulización o cubiertas húmedas saturadas.
- Métodos que mantienen la presencia de parte del agua de mezclado de concreto, durante el periodo inicial de endurecimiento, mediante materiales que sellan la superficie expuesta, tales como láminas impermeables de papel o plástico o con la aplicación de compuestos químicos para formar membranas impermeables de curado.
- Métodos que aceleran la ganancia de resistencia suministrando calor y humedad adicional al concreto, esto se logra normal-mente con la aplicación de vapor de agua directo, serpentines de calentamiento embebidos en el concreto o formaletas calentadas eléctricamente.
- Otros métodos que fomentan la retención del agua dentro del concreto mediante la utilización de productos químicos dentro de la masa, desde que no se afecten las propiedades establecidas para el concreto.

En caso de usar láminas de curado que pue-den ser de polietileno blanco o de papel, se debe cumplir la norma ASTM C171. En caso de usar membranas de curado se debe cumplir la norma ASTM C309. El agua usada para el curado debe cumplir los requisitos del numeral 630.2.1.4 y no debe ser más fría en once grados Celsius (11 °C) que la tempera-tura interna del concreto.

Para cualquier metodología de curado que se realice en la estructura se debe hacer curado estándar y curado en campo, conforme lo establecido en la norma INV E-420/NTC 550, es decir, así como se toman muestras para el control de la calidad de la mezcla, se deben preparar y curar especímenes en las condiciones de la obra (elementos cerca de la estructura) para determinar la eficiencia del curado y la protección del concreto de la estructura.

La efectividad de los productos para el curado del concreto se debe demostrar mediante experiencias previas exitosas o ensayos al inicio de la colocación del concreto.

630.2.4 Productos para las juntas

Cuando el diseño lo requiera en los documentos del proyecto, el diseñador debe proporcionar la ubicación y los detalles de todas las juntas de construcción, contracción y dilatación, estos detalles deben ser seguidos por el constructor en obra. El material utilizado para la elaboración de las juntas debe ser aplicado o instalado según las recomendaciones consignadas en la ficha técnica del producto suministrada por el fabricante. Los productos para juntas deben cumplir los requisitos del artículo 500.

630.2.5 Resina polimérica y material para reparación parcial de estructuras en concreto

Cuando se trate de anclaje de barras, repa-ración de fisuras y puente de adherencia para reparaciones, se debe usar un material que cumpla los requisitos establecidos en la norma ASTM C881. La selección del tipo de resina epóxica debe estar en función del tipo de adherencia, el grado de viscosidad (baja, media o alta), la clase (rangos de temperatura para su aplicación) y el color que estén planteados en los documentos del proyecto.

En anclajes con consideraciones de riesgo sísmico o concreto fisurado se deben considerar anclajes de resinas epóxicas que estén acorde con la ACI 355.4, Calificación de anclajes adhesivos postinstalados en concreto.

Para la reparación de desportillamientos y para el tratamiento de juntas de emergencia, se debe utilizar un mortero base cemento de alta especificación que cumpla los requisitos de la norma ASTM C928 tipo 3.

En todo caso, las resinas poliméricas y los materiales para la reparación parcial de estructuras en concreto deben ser aprobados por el interventor.

630.2.6 Requisitos de durabilidad, resistencia y clase del concreto

El diseño de mezcla de cada tipo de concreto debe cumplir todos los requisitos de:

- Durabilidad
- Clase de concreto
- Resistencia

Para ello, se deben tomar como requisitos límite, los parámetros más conservadores de estos tres aspectos.

Una vez definido el diseño de la mezcla de cada tipo de concreto por usar en obra, se debe entregar al interventor la caracterización de la mezcla de concreto, entre los documentos del proyecto. Cada tipo de concreto debe estar caracterizado, como mínimo, con los siguientes parámetros:

- Tipo de uso: concreto pretensado, posten-sado, reforzado, liviano, simple o ciclópeo.
- Tipo de colocación especial, si es aplicable. Por ejemplo: para instalar con bomba, para instalar bajo agua (tremie).
- Categoría y clase de exposición: se debe definir de acuerdo con el numeral 630.2.6.1.
- Reactividad álcali-sílice y álcali-carbonato.
- Requisitos asociados a la clase de exposición, según el numeral 630.2.6.1: relación a/mc, resistencia mínima a la compresión, contenido de aire y tipo de material cementante, entre otros.
- Tipo de cemento hidráulico y adiciones suplementarias, el cual debe ser definido en función de las condiciones particulares de cada estructura, teniendo en cuenta los requisitos asociados a la clase de exposición.
- Aditivos y adiciones complementarias, en el caso de ser requeridas.
- Tamaño máximo y tipo de gradación del agregado grueso.
- Relación a/mc, valor máximo.
- Mínima resistencia a la compresión (norma de ensayo INV E-410/NTC 673) para una edad específica.
- Asentamiento (norma de ensayo INV E-404/NTC 396), intervalo de valores, pero en caso de mezclas muy fluidas se debe realizar el ensayo para medir el flujo libre (NTC 5222).
- Contenido de aire (norma de ensayo INV E-406/NTC 1032), intervalo de valores.
- En caso de usar concretos especiales, se debe determinar el método constructivo.

630.2.6.1 Durabilidad

El concreto hidráulico se debe diseñar para las resistencias especificadas en los documentos del proyecto y para requisitos de durabilidad, según las condiciones de exposición. Además, se debe tener en cuenta el tipo de refuerzo de la estructura, especialmente en relación con los requisitos de corrosión del acero.

El diseño por durabilidad se puede hacer de manera prescriptiva o por desempeño verificado, según se explica a continuación. Así mismo, no se pueden combinar los dos métodos en el diseño. Si ambos llegaran a quedar especificados, deben prevalecer para el diseño los requisitos más exigentes.

Es responsabilidad del diseñador establecer los requisitos de durabilidad aplicables, con base en las condiciones de exposición (FSPC) de la estructura de concreto hidráulico, tanto para métodos prescriptivos como para métodos por desempeño verificado. El constructor puede optar por construir la obra utilizando uno u otro método.

630.2.6.1.1 Método prescriptivo

Se deben definir las condiciones de exposición de la estructura de concreto y clasificarla según la categoría y grado de severidad, con el objetivo de determinar los requisitos por durabilidad que debe cumplir la mezcla.

El diseñador debe consignar en los documentos del proyecto, las categorías de exposición de forma completa según la Tabla 630 - 7.

Por ejemplo, F0S1P0C2, para un concreto que no está expuesto a ciclos de congelamiento y descongelamiento (F0), con exposición moderada a sulfatos (S1), sin requisitos de permeabilidad (P0), y concreto reforzado que está expuesto a la humedad y a fuentes externas de cloruros (C2).

Sin importar los requisitos dados por el tipo de exposición o resistencia, se deben cumplir los requisitos de material cementante, expresados como el cemento hidráulico más los cementantes suplementarios (puzolanas), de acuerdo con lo establecido en la Tabla 630-7.

La Tabla 630 — 7 presenta las categorías y las clases de exposición para las estructuras de concreto hidráulico. Como una estructura puede estar expuesta a dos o más categorías de exposición, se deben aplicar los requisitos prescriptivos más estrictos que se especifican para cada requisito de formulación (relación a/mc; f´c, y requisitos adicionales, tipo de cementantes, etc.).

Se deben aplicar los criterios de exposición para corrosión solo para estructuras de concreto hidráulico reforzado con acero, como mallas de refuerzo, macrofibras y microfibras de acero, barras de refuerzo, entre otros.

Tabla 630 — 7. Categorías de exposición, severidad y requisitos prescriptivos para el diseño por durabilidad del concreto

							į	Ä	Requisitos mínimos adicionales	nos adiciona	les
No	Categoría	Severidad	Clase	Condi	ción	Rel. a/mc máx. (Nota 9)	nín. (MPa)	ဝိ	Contenido de aire		Límites en los cementantes
Moderada		No aplicable	9	Concreto no exp de congelamier	questo a ciclos nto y deshielo		17				
Concreto expuesto a ciclos		Moderada	E	Concreto expu de congelamier y exposición or hume	esto a ciclos nto y deshielo casional a la dad	0,55	24		Tabla 630 – 8		
Muy F3 que está en contacto continuo severa severa severa e con la humedad y expuesto a productos químicos descongelantes Sulfatos en el suelo, agua (pom) (Nota 2) (F Congelamiento y deshielo	Severa	22	Concreto expu de congelamier y en contacto cx hume	esto a ciclos nto y deshielo ontinuo con la dad	0,45	31		Tabla 630 – 8		
Solubles en solubles en agua (SO4) Agua (SO4) Agua (SO4) Agua (SO4) Agua (Dpm) Agua		Muy severa	22	Concreto expu de congelamien que está en conf con la humeda a productos descongé	esto a ciclos tro y deshielo, tacto continuo d y expuesto químicos	0,40	38		Tabla 630 – 8		Tabla 630 – 9
AsTM Agua (SO4) Agua (ppm) AsTM AsTM				Sulfatos solubles en	Sulfato (SO4)			Tipos de	material cem (Nota 3)	entante	Heade
No applicable SO SO ₄ = < 0,10 SO ₄ = < 150 N/A 17 restricción en el tipo Moderada S1 0,10 ≤ SO ₄ = < 150 ≤ SO ₄ = < 1500 S1 Nota 4 y Nota 5 y				agua (SO4) en el suelo, porcentaje (%) en peso (Nota 1)	disuelto en agua (ppm) (Nota 2)			ASTM C150	ASTM C595	NTC 121	aditivo cloruro de calcio
Moderada S1 0,10 s SO _a < 150 s SO _a < 0,50 28 (Nota 4 y 0,20 1500	(O	No aplicable	SO	SO," < 0,10	SO4" < 150	N/A	17	Sin restricción en el tipo	Sin restricción en el tipo	Sin restricción en el tipo	Sin restricción
+	Sulfato	Moderada	£	0,10 ≤ SO ₄ " < 0,20	150≤ SO ₄ " < 1500	0,50	28	II (Nota 4 y Nota 5)	Tipos con designación MS	MS	Sin restricción

Categoría Severa Severa Sulfato Muy	pep				Ref. a/mc	-				
		Clase	Condición	ición	máx. (Nota 9)	mín. (MPa)	ၓ	Contenido de aire	9	Límites en los cementantes
			Sulfatos solubles en	Sulfato (SO4)			Tipos de	Tipos de material cementante (Nota 3)	entante	Usoda
			agua (SO4) en el suelo, porcentaje (%) en peso (Nota 1)	disuelto en agua (ppm) (Nota 2)			ASTM C150	ASTM C595	NTC 121	aditivo cloruro de calcio
S Sulfato Muy	E E	82	0,20 ≤ SO ₄ " < 2,00	1 500 ≤ SO₄" < 10 000	0,45	31	V (Nota 5)	Tipos con designación HS	НS	No se permite
severa	> @	8	SO ₄ " > 2,00	SO ₄ "> 10 000	0,45	31	V más puzolanas o escoria (Nota 6)	Tipos con designación HS más puzolanas o escoria (Nota 6)	HS y puzolanas o escoria (Nota 6)	No se permite
P No Concreto en aplicable	elgi	8	En contacto con el agua donde no se requiere baja permeabilidad	con el agua requiere baja bilidad	N/A	17		Ninguno	oun	
el agua Requerida	rida	Ы	En contacto con el agua donde se requiere baj a permeabilidad	nel agua donde i permeabilidad	0,50	28		Ninguno	ound	
							Contenid cloruro (Cl concreto,	Contenido máximo de iones de cloruro (CI-) soluble en agua en el concreto, porcentaje por peso de cemento	ones de gua en el r peso de	Requisitos
							Concreto	Concreto preesforzado	esforzado	
No aplicable	elgie	8	Concreto seco o protegido contra la humedad	o o protegido numedad	N/A	17	1,00	90'0	8	Ninguno

ales	Límites en los cementantes	Requisitos		Ninguno	(Nota 8)
Requisitos mínimos adicionales	Contenido de aire	Contenido máximo de iones de cloruro (CI-) soluble en agua en el concreto, porcentaje por peso de cemento	Concreto preesforzado	90'0	90'0
Œ	ŏ	Contenid cloruro (Cl concreto,	Concreto reforzado	06,0	0,15
4	nín. (MPa)			17	35
Rel. a/mc máx. (Nota 9)				0,50	0,40
	Condición			Concreto expuesto a la humedad, pero no a una fuente externa de cloruros	Concreto expuesto a la humedad y a una fuente externa de cloruros provenientes de productos químicos descongelantes, sal, agua salobre, agua de mar o salpicaduras del mismo origen
	Clase			5	ଷ
	Severidad			Moderada	Severa
	Categoría				C Protección del refuerzo para la corrosión

la corrosión de tendones de preesforzado no adheridos».

Nota 9: los limites máximos de la relación a/mc no se aplican al concreto de peso liviano.

Nota 1: el porcentaje en masa de sulfato en el suelo se debe determinar por medio de la norma ASTM C1580.

Nota 3: se permiten combinaciones alternativas de materiales cementantes diferentes a los mencionados en la Tabla 630 - 7, siempre y cuando sean Nota 2: la concentración de sulfatos disueltos en agua en partes por millón, se debe determinar por medio de la norma ASTM D516 o la norma ASTM D4130. ensayados para comprobar la resistencia a los suitatos y se cumplan los criterios de la Tabla 630 - 11. Nota 8: se deben cumplir los requisitos de la NSR referentes a «Protección de concreto para el refuerzo: Pernos con

Nota 4: para exposición al agua marina, son permitidos otros tipos de cemento Portiand, con contenidos de hasta diez por ciento (10 %) de aluminato tricálcico (C3A) si la relación a/mc no excede cero coma cuarenta (0,40), cabeza para refuerzo de corte», «Protección de concreto para el refuerzo: Ambientes corrosivos» y «Protección contra

Nota 5: se permitten otros tipos de cemento como el tipo III o el tipo II o el tipo II o el tipo III o el tipo II o esciones clase S1 o S2, si el contenido de C3A es menor al ocho por ciento (8 %) o cinco por dento (5 %), respectivamente.

mejorar la resistencia a sulfatos, cuando se usa en concretos que contienen cemento tipo V. De manera alternativa, la cantidad de la fuente específica de Nota 6: la cantidad de fuente específica de puzolana o escoria que se use, no debe ser inferior a la cantidad que haya sido determinada, por experiencia en puzoiana o escoria usada, no debe ser menor a la cantidad ensayada, según la NTC 3330 (ASTM C1012) y debe cumplir los requisitos de la Tabla 630 – 11.

Nota 7:el contenido de iones cloruro, solubles en agua, provenientes de los ingredientes -incluyendo el agua-, agregados, materiales cementantes y aditivos de la mezcla de concreto, deben ser determinados según los requisitos de la NTC 4049 (ASTM C1218M), a edades que van de veintiocho días (28 d) a cuarenta y dos días (42 d). Como complemento de la Tabla 630-7, a continuación, se presentan requisitos adicionales para la exposición a congelamiento y deshielo en la Tabla 630-8. La tolerancia de aire incorporado debe ser de más o menos uno coma cinco por ciento (\pm 1,5%). Para concretos de f'c mayores de treinta y cinco megapascales (35 MPa), los valores de la Tabla 630-8 se pueden reducir hasta en uno por ciento (1%).

Tabla 630 - 8. Contenido total de aire para concreto expuesto a ciclos de congelamiento y deshielo

Tamaño máximo nominal	Contenido	de aire (%)
del agregado (mm)	Exposición Clase F1	Exposición Clases F2 y F3
9,5	6,0	7,5
12,5	5,5	7,0
19,0	5,0	6,0
25,0	4,5	6,0
37,5	4,5	5,5
50,0 (Nota)	4,0	5,0
75,0 (Nota)	3,5	4,5

Nota: estos contenidos de aire se aplican a la mezcla total. Al ensayar estos concretos, sin embargo, se retiran las particulas de agregado mayores de cuarenta milimetros (40 mm) sacándolas mediante tamizado y se determina el contenido de aire en la fracción tamizada (la tolerancia en el contenido de aire incorporado se aplica a ese valor). El contenido de aire de la mezcla total se calcula a partir del valor determinado en la fracción cribada que pasa el tamiz de 40 mm, indicado en la norma INV E-406/NTC 1032 (ASTM C231).

En la Tabla 630 — 9 se presenta el límite de materiales cementantes para concreto sometido a clase de exposición F3.

Tabla 630 — 9. Requisitos para concreto sometido a clase de exposición F3

Materiales cementantes	Porcentaje máximo sobre el total de materiales cementantes en peso (Nota 1)		
Cenizas volantes u otras puzolanas que cumplen NTC 3493 (ASTM C618)	25		
Escoria que cumple NTC 4018 (ASTM C989)	50		
Humo de silice que cumple ASTM C1240	10		

Materiales cementantes	Porcentaje máximo sobre el total de materiales cementantes en peso (Nota 1)		
Total de cenizas volantes u otras puzolanas, escoria y humo de silice	50 (Nota 2)		
Total de cenizas volantes u otras puzolanas y humo de silice	35 (Nota 2)		

Nota 1: el total de materiales cementantes también incluye cementos ASTM C150, ASTM C595, NTC 4578 (ASTM C845) y NTC 121. Los porcentajes máximos de esta tabla incluyen:

- a. Cenizas volantes u otras puzolanas presentes en cementos adicionados tipo IP, según la norma ASTM C595 o NTC 121.
- b. Escoria usada en la fabricación de cementos adicionados Tipo IS, según la norma ASTM C595 o NTC 121.
- c. Humo de silice, según la norma ASTM C1240, presente en cementos adicionados.

Nota 2: las cenizas volantes u otras puzolanas y el humo de silice no deben constituir más del veinticinco por ciento (25 %) y diez por ciento (10 %).

Para el caso de elementos estructurales expuestos a condiciones ambientales, tales como obras hidráulicas y estructuras en con-tacto permanente con el agua, los requisitos de durabilidad son aplicables, a excepción de la relación a/mc y f'c mínimo para las clases de exposición presentadas en la Tabla 630 — 10. Para el caso de estructuras que están expuestas a condiciones de exposición severas, con presencia de agentes químicos concentrados, se deben cumplir ciclos de humedecimiento y secado, y ciclos de congelamiento y deshielo del concreto saturado en algunas regiones. La clase de exposición Q se refiere a concretos expuestos a químicos corrosivos.

Tabla 630 — 10. Requisitos de concreto adicionales para estructuras ambientales

Clase de exposición	Relación a/mc máx.	f'c mín. (MPa)
F3	0,42	31
S0	0,45	28
S1	0,42	31
S2	0,40	35
83	0,40	35
P1	0,45	28
Q1	0,42	31

Adicionalmente, se deben cumplir los requisitos de juntas, protección contra la erosión y la protección contra químicos, presentados en la norma NSR para elementos ambientales.

630.2.6.1.2 Métodos por desempeño verificado

En caso de evaluar la durabilidad por el método de desempeño verificado, para exposiciones a sulfatos y al ion cloruro, el diseñador debe consignar en los documentos del proyecto los requisitos de diseño por desempeño veri-ficado para los diferentes tipos de exposición, con base en los siguientes criterios: penetrabilidad

al ion cloruro, en culombios (C), resistencia a sulfatos, en porcentaje (%) de expansión y permeabilidad al agua (NTC 4483). Se debe hacer la verificación experimental de los requisitos de durabilidad para el material colocado en obra.

No se establecen requisitos de contenido mínimo de cementante o de tipo de cemento, siempre y cuando se cumplan los requisitos de desempeño verificado y los requisitos de resistencia especificada para el concreto.

630.2.6.1.2.1 Exposición a sulfatos

Para la elaboración de concretos hidráulicos expuestos a sulfatos, provenientes del suelo, el agua freática y el agua marina, entre otras, se permite el uso de cualquier tipo de cemento que, solo o mezclado con un con-tenido mínimo de material suplementario, demuestre un valor máximo de expansión en relación con la severidad de la exposición, según el método de ensayo de la norma ASTM C1012 y lo establecido en la Tabla 630-11. No se permite la aprobación de la expansión a edades menores ni el uso de ecuaciones de proyección. En cuanto al diseño de la mezcla por exposición a sulfatos, se deben cumplir todos los requisitos limite dados en la Tabla 630-11.

Tabla 630 — 11. Requisitos del concreto con exposición de sulfatos

Tipo de exposición a sulfatos	Descripción	Sulfatos en el suelo, solubles en agua (SO ₄ "), porcentaje (%) en peso	Sulfatos disueltos en agua (ppm)	Expansión según NTC 3330	Permeabilidad al agua según NTC 4483	fic, mín. (MPa)	Uso de acelerantes basados en cloruros
S0	Sin requisitos	< 0,1	< 150	Sin requisitos	Media	28	Sin restricción
S1	Moderada	Entre 0,1 y 0,2	Entre 150 y 1 500	0,1 % a 6 meses	Media	31	Sin restricción
S2	Severa	Entre 0,2 y 2,0	Entre 1 500 y 10 000	0,5 % a 6 meses y 0,1 % a 1 año	Media	35	No se permite
S3	Muy severa	> 2,0	> 10 000	0,1 % a 18 meses	Baja	35	No se permite

Para la evaluación de la permeabilidad al agua se debe seguir lo indicado en la Tabla 630 — 12.

Tabla 630 — 12. Penetración de agua en el concreto según NTC 4483

	Unidades	Permeabilidad		
Tipo de ensayo		Baja	Media	Alta
Coeficiente de permeabilidad al agua	m/s	< 10-12	Entre 10 ⁻¹² y 10 ⁻¹⁰	> 10-10
Profundidad de penetración	mm	< 30	Entre 30 y 60	> 60

630.2.6.1.2.2 Penetración al ion cloruro

Para el caso de concreto que contenga acero de refuerzo, bien sea en barras, mallas, macrofibra, microfibra, entre otros, el diseño de la mezcla de concreto por desempeño verificado para la protección a la penetración del ion cloruro se puede realizar con base en la Tabla 630-13, de acuerdo con el tipo de exposición. El ensayo se debe realizar de acuerdo con la norma de ensayo ASTM C1202. Los requisitos de durabilidad por desempeño verificado para la corrosión del refuerzo requieren, sin embargo, el cumplimiento de los valores de resistencia a la compresión mínima y relación a/mc máxima de la Tabla 630-7.

Carga que pasa (C) ASTM C1202	Penetración de ion cloruro	Tipo de exposición del pavimento con elementos de acero (se excluyen los pasadores de transferencia)
> 4 000	Alta	Concretos sin exposición a cloruros.
Entre 2 000 y 4 000	Moderada	Concretos con exposición leve a cloruros en ambientes secos o interiores.
Entre 1 000 y 2 000	Baja	Concretos en exposición directa a agua marina, o freática con alto contenido de cloruros (severa).
Entre 100 y 1 000	Muy baja	Pavimentos reforzados y continuamente reforzados, expuestos de forma directa al agua con cloruros (severa). Pavimentos en puertos, puentes y viaductos.
< 100	Despreciable	Estructuras que si son dañadas generan grandes pérdidas económicas v/o ambientales irreparables.

Tabla 630 - 13. Requisitos de penetrabilidad a cloruros y tipo de exposición de concreto

630.2.6.1.3 Diseño para la mitigación de la reacción álcali-agregado

Sin importar el tipo de exposición del concreto, se debe evaluar y mitigar, de ser necesario, la reacción álcali-agregado según lo establecido en la norma ASTM C1778 y los demás requisitos del presente artículo.

630.2.6.1.3.1 Evaluación de la reacción álcali-carbonato

Si el agregado por utilizar en un proyecto proviene de una fuente que contiene material calcáreo, se debe caracterizar el potencial de reactividad álcali-carbonato con base en su composición química, particularmente el contenido de magnesio (MgO), cal (CaO) y alúmina (Al2O3). Se debe determinar si la relación CaO/MgO a Al2O3 del agregado se encuentra entre los rangos de composición de los agregados que son considerados potencialmente expansivos según se muestra en la Figura 630 — 1.

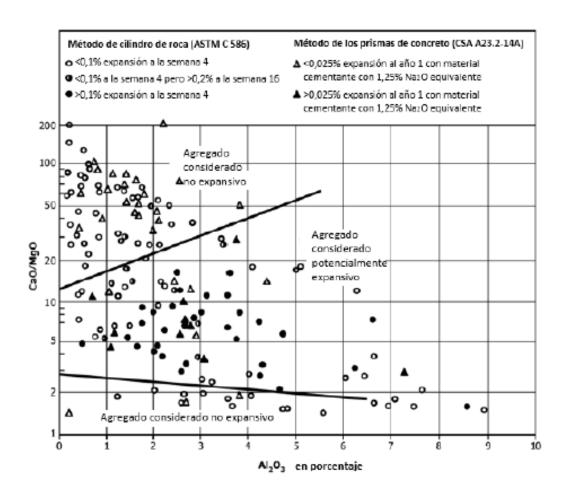


Figura 630 — 1. Franjas de composición para calificar el potencial de reacción álcali-carbonato de rocas calcáreas

Fuente: Figura adaptada de la norma ASTM C1778.

En cualquier caso, bien sea que el agregado se encuentre o no fuera de la franja de agre-gado potencialmente reactivo, el agregado calcáreo debe ser analizado para determinar su potencial, con el fin de desarrollar la reacción álcalisílice y si esta se presenta, se debe proceder a su mitigación.

Si el agregado calcáreo se encuentra en el rango considerado potencialmente expansivo para reacción álcali-carbonato, se debe ensayar utilizando el método de prismas de concreto por el método ASTM C1293 o por el método ASTM C1105, usando un contenido reducido de álcali (uno coma ocho kilogramos por metro cúbico (1,8 kg/m3) para minimizar el riesgo de una expansión perjudicial como resultado de la reacción álcali-sílice). Según los resultados obtenidos en estos ensayos, se puede utilizar o no el agregado para la elaboración de concreto con base en los siguientes criterios:

- Cuando se usa solamente el método de la norma ASTM C1293 y con este se determina una expansión mayor que cero coma cero cuatro por ciento (0,04 %) a doce (12) meses, se debe realizar un análisis petrográfico para determinar si en el concreto hubo reacción álcalicarbonato y reacción álcali-sílice. Si el análisis petrográfico muestra que ocurrió reacción álcali-carbonato, solo o en combinación con reacción álcali-sílice, el agregado no puede ser utilizado para hacer concreto. Solo se puede usar el agregado si se implementa una explotación selectiva de la fuente, que demuestre que el nuevo agregado obtenido cumple los requisitos de expansión máxima por reacción álcali-carbonato.
- Cuando se usa el método ASTM C1105, el procedimiento se debe modificar de tal forma que el contenido de álcalis en el ensayo se mantenga por debajo de uno coma ocho kilogramos por metro cúbico (1,8 kg/m3), para evitar que se genere reacción álcali-sílice. Si el resultado de expansión por este método es cero coma cero veinticinco por ciento (0,025 %) o mayor a los seis (6) meses, o cero coma

cero tres por ciento (0,03 %) o mayor a los doce (12) meses, el agregado se considera reactivo y no se puede utilizar para hacer concreto. Los agregados calcáreos que muestren valores de expansión menores pueden ser utilizados para la elaboración de concreto. Aun si cumple este requisito, se debe evaluar el potencial de expansión por reacción álcali-sílice por el método ASTM C1260 o ASTM C1293, y de ser necesario, realizar la mitigación.

630.2.6.1.3.2 Evaluación de la reacción álcali-sílice

En el caso de la reacción álcali-sílice, se puede realizar la inspección petrográfica de los agre-gados al cumplir la norma ASTM C295, la cual sirve para determinar la presencia de sílice amorfa, sílice microcristalina, policristalina o criptocristalina.

La evaluación petrográfica, por sí sola, no se debe tomar como un indicativo de la reactividad de los agregados, la cual se debe analizar solamente por desempeño verificado.

La evaluación del potencial de expansión por reacción álcali-sílice se debe realizar según lo establecido en la NTC 6222 (ASTM C1260) (método de las barras de mortero) o, alternativamente, por la norma ASTM C1293 (método de los prismas de concreto). Para estas pruebas diagnósticas, solo se debe usar el cemento estándar (Portland Tipo I) definido por dichas normas. No se puede usar el cemento que se va a emplear en la obra. La calificación de reactividad de los agregados se realiza con base en los parámetros que se dan en la Tabla 630-14.

Tabla 630 - 14. Calificación de reactividad de los agregados

Norma	Material involucrado	Proceso	Requisito	Calificación	Valor
ASTM C1260	Agregados finos y gruesos. Solo se ensaya el agregado fino si ambos son de la misma fuente.	Diagnóstico de reactividad	Expansión en barras de mortero	Agregado inocuo	< 0,1 %
				Agregado potencialmente reactivo	≥0,1 %
				Agregado reactivo	≥ 0,2 %
ASTM C1567	Agregados finos y gruesos. Solo se ensaya el agregado fino si ambos son de la misma fuente. Cementante suplementario.	Mitigación de la reactividad	Expansión en barras de mortero	Mezcla mitigada	< 0,1 % a 16 días, si la curva de expansión tiene tendencia asintótica horizontal a los 16 días
ASTM C1293	Agregados finos y gruesos que se usan en la mezcla.	Diagnóstico de la reactividad	Expansión de los prismas de concreto	Potencialmente no reactivo	< 0,04 % a 1 año
				Potencialmente dañino	≥ 0,04 % a 1 año
	Agregados finos y gruesos, y cementante suplementario que se van a usar en la mezcla.	Mitigación de la reactividad	Expansión de los prismas de concreto	Mezcla mitigada	< 0,04 % a 2 años (Nota)

Nota: si no se cuenta con datos, se trabaja solo con las normas ASTM C1260 y ASTM C1567, como lo establece la norma ASTM C1778.

La mitigación de la reacción álcali-sílice mediante la aplicación de la norma ASTM C1567 o ASTM C1293, solo se puede realizar usando el cemento especificado en la norma de ensayo. No se admite el diseño de la mitigación usando el cemento de la obra.

El diseño de la mitigación se puede realizar mediante el método por desempeño verificado o el método prescriptivo, ambos descritos en la norma ASTM C1778 secciones 7, 8 y 9.

Cuando se emplee el método ASTM C1567 y se utilice, para la elaboración del concreto, agregado de diferentes fuentes, se debe mitigar la reacción álcali-sílice, con base en el material más reactivo. Además, para la mitigación de la reacción álcali-sílice se usan los criterios de diseño por el método prescriptivo o por el método de desempeño verificado que son detallados en la guia ASTM C1778.

630.2.6.1.3.3 Mitigación de reacción álcali-sílice por método prescriptivo

Para aplicar el criterio de diseño prescriptivo del método ASTM C1778 se deben tener en cuenta los siguientes requisitos:

- Emplear los valores de expansión por reactividad álcali-sílice de los agregados, según los resultados de la NTC 6222 (ASTM C1260) o ASTM C1293, o ambas.
- Determinar la ocurrencia de la reacción álcali-agregado en función de la exposición.
- Determinar la clase de severidad de las consecuencias en los casos que ocurra reacción álcali-sílice.
- Determinar el nivel de prevención requerido, con base en los resultados anteriores.
- Especificar con los requisitos más restrictivos.

630.2.6.1.3.4 Mitigación de reacción álcali-sílice por el método de desempeño verificado

En el caso del diseño de la mitigación de la reacción álcali-sílice por el método de desempeño verificado, se deben conocer los valores de expansión de los agregados por la NTC 6222 (ASTM C1260) o ASTM C1293 o ambas cuando estén disponibles. Es decir, con los resultados de los ensayos se determina la reactividad del material y se procede a diseñar directamente la mitigación. Uno de los métodos de mitigación es emplear material cementante suplementario, determinando la cantidad por los métodos de la ASTM C1567 o ASTM C1293.

630.2.6.2 Clases de concreto

Para el caso de puentes, estructuras auxiliares de puentes, estructuras hidráulicas de la infraestructura vial y muros de contención se debe definir la clase de concreto por usar, de acuerdo con la clasificación en la Norma Colombiana de Diseño de Puentes (CCP).

Una vez determinada la clase del concreto, se debe realizar el diseño de mezcla cumpliendo con los requisitos por clase de concreto presentados en el CCP. Para el caso la de relación a/mc, contenido de aire y resistencia a la compresión a los veintiocho días (28 d), se deben cumplir los requisitos límite del CCP y los requisitos de los numerales 630.2.6.1 y 630.2.6.3, es decir, se debe diseñar la mezcla con los parámetros límite más conservadores entre los establecidos por clase de concreto, durabilidad y resistencia.

630.2.6.3 Resistencia

También, se deben cumplir los siguientes requisitos para la resistencia:

• Concreto ciclópeo: la resistencia no debe ser menor de diecisiete megapascales (17 MPa) a los veintiocho días (28 d).

- Concreto simple: la resistencia no debe ser menor de diecisiete megapascales (17 MPa) a los veintiocho días (28 d).
- Concreto reforzado: la resistencia no debe ser menor de veintiún megapascales (21 MPa) a los veintiocho días (28 d).
- Concreto pretensado y postensado: la resistencia no debe ser menor de treinta y dos megapascales (32 MPa) a los veintiocho días (28 d).

Para el caso de concreto liviano, los límites máximos de la relación a/mc hallados en el numeral 630.2.6.1 no aplican.

Por otra parte, el valor de resistencia a la compresión del concreto liviano no debe ser mayor de treinta y cinco megapascales (35 MPa), es decir, elementos que requieran concreto con una resistencia a la compresión mayor de treinta y cinco megapascales (35 MPa) no se pueden construir con este tipo de concreto, a menos que se demuestre experimentalmente que, elementos estructurales elaborados con el concreto liviano a usar en obra proporcionan una resistencia y tenacidad iguales o mayores que las de elementos comparables hechos con concreto de peso normal de la misma resistencia.

630.3 Equipo

Es responsabilidad del constructor disponer de los equipos y elementos para el suministro de los materiales, fabricación, transporte, colocación, vibrado, curado y acabado del concreto estructural. También, equipos y elementos necesarios para la ejecución de juntas, equipos para limpieza, reparaciones, etc.

El constructor debe garantizar la calibración periódica de los equipos, de acuerdo con el plan de mantenimiento y calibración de estos, fijado en el plan de calidad del proyecto. Las calibraciones deben ser realizadas por laboratorios de calibración que cuenten con la acreditación por parte del Organismo Nacional de Acreditación de Colombia (ONAC) para la unidad de medida por verificar, garantizando que las mediciones realizadas por la empresa sean trazables al Sistema Internacional de Unidades (SI).

A continuación, se presentan los requisitos de los principales equipos y herramientas requeridos para la elaboración de concretos y la construcción de estructuras con este material.

630.3.1 Equipo para la elaboración de agregados

Para la producción de los agregados pétreos se requieren equipos para su explotación, cargue, transporte y proceso. La unidad de proceso consiste en una

unidad clasifica-dora y una planta de trituración provista de trituradora primaria, secundaria y terciaria, siempre que esta última se requiera, así como un equipo de lavado. La planta debe estar provista de los filtros y demás accesorios necesarios para controlar la contaminación ambiental, de acuerdo con la reglamentación vigente.

630.3.2 Producción de la mezcla de concreto

La producción del concreto debe cumplir los lineamientos establecidos en la NTC 3318 (ASTM C94), tanto para el concreto producido in situ como para el concreto producido por un proveedor externo, en planta externa.

Si se prevé la incorporación de aditivos a la mezcla, la central debe dosificarlos con precisión suficiente. Los aditivos en polvo se deben dosificar en masa y los aditivos en forma de líquido o de pasta en masa o en volumen, con una precisión no inferior al tres por ciento (± 3 %) de la cantidad especificada de producto.

El temporizador del amasado y el de la descarga del mezclador deben estar protegidos de tal forma que, durante el funcionamiento del mezclador, no se pueda producir la descarga hasta que haya transcurrido el tiempo de amasado previsto.

630.3.2.1 Mezcla en el sitio

Se permite el empleo de mezcladoras estacionarias en el lugar de la obra, previa aprobación del interventor, cuya capacidad no debe exceder de tres metros cúbicos (3 m3).

630.3.3 Equipo para el transporte del concreto al sitio de las obras

La utilización de cualquier sistema de transporte o de conducción del concreto debe contar con la aprobación del interventor. Dicha aprobación no se debe considerar definitiva por el constructor y la condición del uso del sistema de conducción o transporte se debe suspender inmediatamente, si el asentamiento o flujo de la mezcla (según sea el tipo de consistencia del concreto) excede los límites especificados o si la segregación de esta es excesiva. Se debe garantizar la homogeneidad de la mezcla mediante la prueba de uniformidad del concreto, de acuerdo con el procedimiento definido en el apéndice A de la NTC 3318 (ASTM C94).

Se debe garantizar la homogeneidad de la mezcla de concreto. Para esto es necesario que el transporte cumpla el horario programado considerando los tiempos de fraquado. De lo contrario, se debe hacer uso de aditivos retardantes de fraquado.

630.3.3.1 Transporte del concreto en camiones mezcladores

El transporte del concreto a la obra se rea-liza en camiones mezcladores o agitadores provistos de tambor giratorio cerrado con paletas internas, los cuales están equipados con cuentarrevoluciones. Deben ser capaces de proporcionar mezclas homogéneas y descargar su contenido sin que se produzcan segregaciones.

630.3.3.2 Transporte del concreto en volquetas

Para distancias cortas se emplean camiones del tipo volqueta, sin elementos de agitación, de forma que se impida toda segregación, exudación, evaporación de agua o intrusión de cuerpos extraños. Su caja debe ser lisa y estanca, y estar limpia, para lo cual se debe disponer de un equipo adecuado. El sistema de descarga puede ser basculante o por medio de bandas o tornillos. Estos camiones deben estar siempre provistos de una lona o cobertor para proteger el concreto fresco durante su transporte, evitando la excesiva evaporación del agua o la intrusión de elementos extraños.

Se debe disponer de los equipos necesarios para la limpieza de los elementos de transporte, antes de recibir una nueva carga de concreto.

630.3.3.3 Transporte del concreto en otros tipos de equipos

Se pueden utilizar otros vehículos de transporte de concreto tales como camiones agitadores, buggies, entre otros, si el concreto no pierde sus propiedades y uniformidad.

Los diferentes tipos de equipo de transporte deben ser seleccionados, de acuerdo con la tecnología utilizada para la construcción, la logística y el entorno del proyecto y el tipo de concreto, previa aprobación del interventor.

El constructor debe tener en cuenta y cumplir todas las disposiciones vigentes sobr**e** tránsito automotor y ambiente, emanadas por las autoridades competentes, en especial el Ministerio de Transporte y el Ministerio de Ambiente, Vivienda y Desarrollo Territorial.

Independiente del sistema de transporte escogido, el interventor tiene la autoridad de rechazar o aceptar la mezcla antes de su colocación. Debe verificar que las propiedades y la uniformidad del concreto no se modificaron durante el transporte.

630.3.4 Equipos de puesta en obra del concreto

El constructor debe disponer de los medios de colocación del concreto que permitan una buena regulación de la cantidad de mezcla depositada, para evitar salpicaduras, segregación y choques contra las formaletas o el refuerzo.

630.3.4.1 Formaleta y obra falsa

El constructor debe suministrar e instalar todas las formaletas necesarias para confinar y dar forma al concreto, de acuerdo con las líneas mostradas en los documentos del proyecto. Las formaletas se deben poder ensamblar firmemente y tener la resistencia suficiente para contener la mezcla de concreto, sin que se formen combas entre los soportes u otras desviaciones de las líneas y contornos que muestran los documentos del proyecto, ni se pueda escapar el mortero.

La obra falsa o armazones provisionales deben ser construidos sobre cimientos suficiente-mente resistentes para soportar las cargas sin asentamientos perjudiciales. Toda la obra falsa debe ser diseñada y construida con la solidez necesaria que le permita soportar, sin sufrir deformación apreciable, las cargas a que puede estar sometida, las cuales deben incluir, además del peso de la superestructura, las correspondientes a las formaletas, arriostramientos, carriles de circulación y otras cargas que le puedan ser impuestas durante la construcción. La obra falsa debe ser convenientemente apuntalada y amarrada, para prevenir distorsiones y movimientos que pue-dan producir vibraciones y deformaciones en la formaleta de la superestructura.

630.3.4.2 Vibradores

Los vibradores para la compactación del concreto deben ser de tipo interno simple y tener una intensidad suficiente para producir la plasticidad y la adecuada consolidación del concreto, pero sin llegar a causar la segregación de los materiales.

Para fundiciones delgadas, donde las formaletas estén especialmente diseñadas para resistir la vibración, se deben emplear vibra-dores externos de formaleta, reglas y mesas vibratorias, entre otras.

En la selección del equipo más apropiado para cada elemento estructural se recomienda consultar el documento ACI 309R, Guía para la consolidación del concreto.

630.4 Ejecución de los trabajos

630.4.1 Explotación de materiales y elaboración de agregados

Rige lo establecido en el numeral 105.13.3 del artículo 105, Desarrollo de los trabajos.

630.4.2 Estudio de la mezcla y obtención de la fórmula de trabajo

La dosificación del concreto determina las proporciones en que se deben combinar los diferentes materiales componentes, como son: agregados, material cementante, adi-ciones suplementarias, agua, aditivos y eventualmente adiciones complementarias, de modo que se obtenga un concreto que cumpla la resistencia, la consistencia, la manejabilidad, la durabilidad y las demás exi-gencias requeridas por las especificaciones particulares de los documentos del proyecto y las presentes especificaciones.

Con suficiente antelación al inicio de los tra-bajos, el constructor debe suministrar al interventor, para su verificación, muestras representativas de los agregados, material cementante, adiciones suplementarias, agua, aditivos y, eventualmente, adiciones complementarias por utilizar, avaladas por los resultados de ensayos de laboratorio que garanticen la conveniencia de emplearlos en el diseño de la mezcla.

Una vez el interventor realice las comprobaciones que considere necesarias y dé su aprobación a los materiales con base en el cumplimiento de los requisitos de la presente especificación, el constructor debe diseñar la mezcla y debe definir una fórmula de trabajo, la cual debe someter a consideración del interventor. Dicha fórmula señala:

- El tipo y la marca de cemento.
- El tipo y la marca de adiciones suplementarias.
- Las proporciones en que se deben mezclar los agregados disponibles y la gradación media a que da lugar dicha mezcla, por los tamices correspondientes a la granulometría aceptada, así como la franja de tolerancia dentro de la cual es válida la fórmula propuesta.
- Las dosificaciones de material cementante, agregados grueso y fino, adiciones suplementarias, aditivos y eventualmente adiciones complementarias, se deben hacer en peso por volumen unitario de concreto (usualmente un metro cúbico de concreto, o fracción de este). La cantidad de agua y aditivos líquidos se puede dar por peso o por volumen. Cuando se contabilice el cemento por bolsas, la dosificación de la bachada por producir debe corresponder a un número entero de bolsas (aproximado al entero superior).
- El módulo de finura del agregado fino.
- El contenido de aire (si se ha especificado).
- La resistencia a compresión de la mezcla a veintiocho días (28 d) de curado, y las edades adicionales que se especifiquen en el concreto a usar, la cual se mide según la norma INV E-410/NTC 673.
- La consistencia del concreto debe estar dentro de los límites indicados en los documentos del proyecto para cada tipo de concreto. Si la consistencia se mide

según el ensayo de asentamiento, se debe utilizar la norma de ensayo INV E-404/NTC 396 (aplicable para mezclas entre los trece y los doscientos treinta milímetros (13 mm – 230 mm) de asentamiento). Si la consistencia se mide según el ensayo de flujo libre, se debe utilizar la NTC 5222 (aplicable para mezclas de más de dos-cientos treinta milímetros (230 mm)). Se pueden utilizar medios electrónicos para medir la consistencia del concreto desde que previamente se realicen correlaciones con los ensayos de las normas INV E-404/NTC 396 o NTC 5222, la que sea aplicable, y con aprobación del interventor. Para la aprobación de cualquier medio electrónico, el interventor puede solicitar los datos experimentales que dan sustento a las correlaciones, sin perjuicio de los datos que sean presentados por parte del fabricante del equipo.

• Cumplimiento de la ACI 308, Guía para el curado del concreto.

El constructor debe determinar la consistencia de cada concreto teniendo en cuenta las condiciones específicas del proyecto (sistema de colocación, condiciones ambientales, tipo de estructura, materiales componentes, entre otras) y este debe ser aprobado por el interventor.

La fórmula de trabajo se debe reconsiderar cada vez que varíe alguno de los siguientes factores:

- El tipo o clase del material cementante.
- El tipo, absorción y tamaño máximo del agregado grueso.
- El módulo de finura del agregado fino en más de dos décimas (0,2).
- La gradación del agregado combinado en una magnitud tal, que ella se salga de la tolerancia fijada.
- La naturaleza y la proporción de los aditivos.
- El método de puesta en obra del concreto.
- La procedencia del agua.
- Las tolerancias granulométricas indicadas en la Tabla 630 18.

En caso de variar cualquier otro parámetro, el interventor puede exigir la modificación de la fórmula de trabajo para que esta se ajuste a la variación de los parámetros realizada.

El constructor debe considerar que el concreto sea dosificado y elaborado para asegurar una resistencia a la compresión promedio suficientemente superior a la especificada en los documentos del proyecto, según el tipo de concreto, de manera que se minimice la frecuencia de los resultados de pruebas por debajo del valor especificado. La dosificación también debe estar en función de los requisitos mínimos de durabilidad. Se deben cumplir los lineamientos de dosificación del concreto de la

NSR. Con este fin, el constructor debe tener en cuenta que, la magnitud en que el promedio de resistencia de la mezcla deba exceder la resistencia especificada de diseño, depende de la desviación estándar de la resistencia durante la etapa de producción y de la precisión con la que dicho valor pueda ser estimado a partir de datos históricos sobre mezclas iguales o similares.

Para casos en que los valores se encuentren por debajo de la especificación, se debe cumplir lo especificado en la NSR: «El nivel de resistencia de una clase determinada de concreto se considera satisfactorio si cumple con los dos siguientes requisitos:

- a) Cada promedio aritmético de tres ensayos de resistencia consecutivos es igual o superior a f'c.
- b) Ningún resultado del ensayo de resistencia es menor que f´c por más de 3,5 MPa cuando f´c es 35 MPa o menor; o por más de 0,10 * f´c cuando f´c es mayor a 35 MPa».

Al efectuar las mezclas de prueba en el laboratorio para el diseño de la mezcla, las muestras para los ensayos de resistencia deben ser elaboradas y curadas de acuerdo con la norma INV E-402/NTC 1377 y ensayadas según la norma de ensayo INV E-410/NTC 673. Se deben elaborar curvas que muestren la variación de la resistencia a la compresión a veintiocho días (28 d) (o a la edad definida para el tipo de concreto) en función de la relación a/mc y del contenido de material cementante. Estas curvas se deben basar en no menos de tres (3) puntos y preferiblemente cinco (5) puntos, que representen mezclas de prueba que den lugar a resistencias a la compresión por encima y por debajo de la requerida. Cada punto debe representar el promedio de, por lo menos, dos (2) cilindros estandarizados de ciento cincuenta milímetros (150 mm) de diámetro por trescientos milímetros (300 mm) de altura o tres (3) cilindros estandarizados de cien milímetros (100 mm) de diámetro por doscientos milímetros (200 mm) de altura, ensayados a veintiocho días (28 d) (o a la edad definida para el tipo de concreto).

Los valores de la relación a/mc máxima y el contenido mínimo de material cementante admisibles por resistencia para el concreto a emplear en la estructura, son los que permiten obtener una resistencia promedio por encima de la resistencia de diseño del elemento y cumplir los requisitos de durabilidad y clase de concreto.

En todos los casos, la relación a/mc y el con-tenido de material cementante deben cumplir los valores máximo y mínimo, respectiva-mente, permitidos por las consideraciones de durabilidad y clase de concreto correspondientes a los definidos en los documentos del proyecto.

La aprobación que dé el interventor al diseño de la mezcla no implica necesariamente la aceptación posterior de las obras de concreto que se construyan con base en dicho diseño, ni exime al constructor de su responsabilidad de cumplir todos los requisitos de los documentos del proyecto. La aceptación de las obras para fines de pago depende de su correcta ejecución, el cumplimiento de los requisitos de durabilidad y clase de concreto, y de la obtención de la resistencia a la compresión mínima especificada para el respectivo tipo de concreto, resistencia que debe ser comprobada con base en las mezclas realmente incorporadas en tales obras.

No se permite ningún cambio al diseño de la mezcla, sin aprobación del interventor.

El diseño debe llevar una copia de todos los resultados de ensayo, incluyendo las fechas de las pruebas, una lista completa de los materiales, indicando tipo, fuente y características especificadas, tipo y resultados de las pruebas físicas y químicas sobre agrega-dos, material cementante, adiciones, agua y aditivos. También, debe incluir el módulo de finura de la arena y el contenido de aire en la mezcla. La producción industrial de la mezcla no puede comenzar hasta que el interventor apruebe el informe de diseño por escrito.

Los laboratorios en donde se realicen los ensayos necesarios para el desarrollo de la fórmula de trabajo de la mezcla deben ser empresas legalmente constituidas que cuenten con experiencia y/o trayectoria en ejecución de pruebas y ensayos de control de calidad de materiales, que puedan demostrar apropiadamente la competencia de su personal de laboratorio y cuyos informes de resultados informados contengan la aprobación y la autorización para su emisión, mediante la firma del responsable técnico facultado para ello. El laboratorio debe contar con todo el equipamiento principal y auxiliar necesario para el correcto desempeño de sus actividades y asegurar que estos cuenten con la exactitud y la precisión adecuadas para lograr resultados válidos. El laboratorio debe contar con un programa de calibración de sus equipos y se debe asegurar de que los resultados de la medición sean trazables al SI mediante alguna de las siguientes alternativas:

- La calibración de los equipos proporcionados por un laboratorio de metrología acreditado por ONAC.
- La comparación directa o indirecta a patrones nacionales o internacionales que cuenten con unidades del SI.
- Los valores certificados de materiales de referencia (MRC) proporcionados por productores competentes con trazabilidad metrológica establecida al SI.

El constructor es el responsable de garantizar que todos los ensayos necesarios se realicen. Los informes deben ser entregados rutinaria-mente al interventor, el profesional a cargo del diseño, a los proveedores de material y a la autoridad competente que verifique el cumplimiento de la calidad o que tome acciones correctivas.

630.4.3 Almacenamiento de materiales

Los agregados, el material cementante, las adiciones suplementarias, los aditivos y las adiciones complementarias se deben almacenar, de tal forma que se prevenga su deterioro o contaminación. Cualquier material que se haya deteriorado o contaminado no se debe usar para la elaboración del concreto. Para prevenir esta situación, los materiales se deben almacenar de acuerdo con las siguientes indicaciones.

630.4.3.1 Almacenamiento de los agregados pétreos

Los agregados se deben producir o suministrar en fracciones granulométricas diferenciadas, que se deben acopiar y manejar por separado, hasta su introducción en las tolvas de agregados. Cada fracción debe ser suficientemente homogénea y se debe poder acopiar y manejar sin peligro de segregación, atendiendo las precauciones que se detallan a continuación:

- El agregado grueso no debe permanecer almacenado durante un tiempo prolongado porque los finos de este tienden a asentarse y acumularse. Sin embargo, cuando el almacenamiento sea necesario, el método de almacenamiento utilizado debe minimizar la segregación, rotura de agregados, excesiva variación en la granulometría y contaminación.
- Las existencias se deben acumular en capas horizontales o de pendiente suave, garantizando la homogenización del mate-rial en acopio.
- Se deben disponer sistemas de drenaje apropiados. Para tal efecto, los patios de almacenamiento deben estar en pen-diente, de tal manera que se garantice la captación, conducción y evacuación del agua, con el objeto de que los agregados finos y gruesos mantengan una humedad homogénea.
- Los camiones, cargadores u otros equipos no deben ser operados sobre los acopios porque, además de fracturar el agregado, lo contaminan.
- Se debe proteger el agregado seco y fino ante la posibilidad de ser separado por el viento, mediante el uso de lonas o rompe-vientos.

- Se debe prevenir la contaminación cruzada entre los diferentes tamaños de agregado mediante muros o amplios espacios entre acopios.
- El almacenamiento de los agregados se puede realizar sobre patios pavimentados construidos para este fin. Sin embargo, si los acopios se disponen sobre el terreno natural, no se deben utilizar los quince centímetros (15 cm) inferiores de los mismos.
- En lo posible, los acopios deben ser cubiertos. En caso, de no contar con cubiertas, se deben implementar todos los procedimientos y los controles que garanticen el producto.
- Cuando se detecten anomalías en el suministro de los agregados, ellos se deben acopiar por separado hasta confirmar su aceptación. Esta misma medida se debe aplicar cuando se autorice el cambio de procedencia de un agregado. No se deben emplear métodos de transporte, desde los acopios hasta las tolvas de la central, que pudieran causar segregación, degradación o mezcla de fracciones de distintos tamaños.
- El sistema de abastecimiento de agrega-dos se debe programar de manera tal que la cantidad de agregado sea suficiente para cumplir la programación prevista en el proyecto.

Para todo lo anterior, se sugiere consultar el documento ACI 304R, Guía para medir, mezclar, transportar y colocar concreto; que contiene las prácticas recomendables de almacenamiento y manejo de agregados.

630.4.3.2 Almacenamiento del material cementante y adiciones suplementarias

El material cementante en sacos se debe almacenar en sitios secos y aislados del suelo (sobre estibas) y de muros, en acopios de no más de siete metros (7 m) de altura.

Si el material cementante se suministra a granel, se debe almacenar en sitios aislados de la humedad. La capacidad mínima de almacena-miento debe ser la suficiente para el consumo de dos (2) jornadas de producción normal.

Todo cemento y adición suplementaria que tenga más de dos (2) meses de almacena-miento en sacos, o tres (3) meses en silos, debe ser evaluado y avalado por el interventor, para verificar si aún es susceptible de utilización.

630.4.3.3 Almacenamiento de aditivos y adiciones complementarias

Los aditivos y las adiciones complementarias se deben proteger convenientemente de la intemperie y de toda contaminación. Los productos que vengan en sacos se deben almacenar bajo cubierta y conservando las mismas precauciones que en el caso del almacenamiento del material cementante y las adiciones suplementarias. Los aditivos y las adiciones complementarias suministra-dos en forma líquida se deben almacenar en recipientes estancos. Para todo caso, los proveedores de los productos deben suministrar dentro de la ficha técnica o por separado, en documento escrito, las recomendaciones para el almacenamiento de los productos, de tal manera que no se afecte su calidad. Se deben seguir todas las disposiciones y recomendaciones consignadas en la ficha técnica del producto suministrada por el fabricante.

630.4.4 Preparación de la zona de los trabajos

La excavación necesaria para las cimentaciones de las estructuras de concreto y su preparación para la cimentación, incluyendo su limpieza y apuntalamiento, cuando sea necesario, se debe efectuar conforme se estipula en el artículo 600, Excavaciones varias. Cualquier deterioro ocurrido después de ter-minada la excavación, debe ser subsanado por el constructor, sin costo adicional para INVÍAS, utilizando procedimientos aprobados por el interventor.

630.4.5 Instalación de la formaleta y obra falsa

Todas las formaletas para confinar y soportar la mezcla de concreto mientras se endurece, deben ser diseñadas por el constructor y aprobadas por el interventor, de tal manera que permitan la colocación y la consolidación adecuadas de la mezcla en su posición final y su fácil inspección. Así mismo, deben ser suficientemente herméticas para impedir pérdidas del mortero de la mezcla.

La aprobación del diseño de las formaletas por parte del interventor no exime al constructor de su responsabilidad respecto de la seguridad, la calidad del trabajo y el cumplimiento de todas las especificaciones.

Las formaletas se deben ensamblar firme-mente y deben tener la resistencia suficiente para contener la mezcla de concreto sin deformaciones y manteniendo las tolerancias propias de la norma vigente (por ejemplo: reglamento NSR vigente, código de puentes u otros.

Antes de iniciar la colocación del concreto se deben limpiar de impurezas, incrustaciones de mortero y cualquier otro material extraño. Su superficie interna se debe cubrir con productos antiadherentes, que no manchen la superficie del concreto, que impida la absorción de humedad por parte del encofrado y no sea absorbido por el concreto. La colocación del desmoldante en el encofrado se debe realizar siguiendo las indicaciones del proveedor que deben ser suministradas en un

documento escrito. Se debe aplicar el desmoldante antes de colocar el acero y no se debe permitir que este entre en contacto con el acero.

Las abrazaderas que se utilicen para sostener las formaletas y que queden embebidas en el concreto, deben ser pernos de acero provistos de rosca, tuercas y acoples adecuados, que permitan retirar los extremos exteriores, sin producir daños en las superficies del concreto. Todos los huecos resultantes del retiro de las abrazaderas se deben llenar con un mortero de consistencia seca.

No se puede colocar concreto dentro de las formaletas si estas no han sido inspeccionadas y aprobadas por el interventor. No se debe mover la cimbra o hacer alguna modificación cuando el concreto haya alcanzado su fraguado inicial.

Las formaletas se pueden remover parcial o totalmente, tan pronto como la mezcla haya adquirido la resistencia suficiente, comprobada mediante ensayos, para sostener su propio peso y el peso de cualquier otra carga.

De acuerdo con los lineamientos del diseñador establecidos en los documentos del proyecto, el constructor debe presentar al interventor un procedimiento apropiado para el retiro de la obra falsa, de manera tal, que la estructura vaya tomando las cargas en la secuencia indicada por el diseñador de la estructura.

Toda obra falsa o cimbra para la construcción de puentes u obras similares debe ser dise-ñada por el constructor, quien debe someter el diseño a consideración del interventor. Para la aprobación de la obra falsa o cimbra se deben entregar al interventor las memorias de cálculo y los planos de taller debidamente avalados por el profesional facultado para el diseño de estos elementos. En el diseño se deben tener en cuenta las cargas muertas y vivas a las que puede estar sometida la obra falsa durante y después de la colocación del concreto. Las eventuales deflexiones de la obra falsa, debido a las cargas, se deben compensar mediante contraflechas, de tal forma que la estructura terminada se ajuste a los niveles indicados en los documentos del proyecto.

En la construcción de cimbras para arcos, se deben proveer los medios adecuados que permitan un descenso gradual de los centros hasta obtener el autosoporte del arco.

630.4.6 Elaboración de la mezcla

Cuando la mezcla se produce en una planta central, sobre camiones mezcladores o por una combinación de estos procedimientos, el trabajo se debe efectuar de acuerdo con los requisitos aplicables de la NTC 3318 (ASTM C94).

630.4.6.1 Mezclado manual para concretos no estructurales

La mezcla manual solo se puede efectuar, previa aprobación del interventor, para estructuras pequeñas no estructurales que requieran concreto de resistencia a la compresión no superior a catorce megapascales (14 MPa) a los veintiocho días (28 d), o en casos de emergencia que requieran un reducido volumen de concreto. En tal caso se debe colocar un veinte por ciento (20 %) adicional de cemento, en peso, sobre el requerido según el diseño de la mezcla.

El mezclado manual se debe hacer en bachadas no mayores de cero coma veinticinco metros cúbicos (0,25 m3), sobre una superficie lisa e impermeable.

Las cargas mezcladas a mano no se pueden emplear para concreto colocado debajo del agua, ni concreto estructural.

630.4.6.2 Reablandamiento del concreto

Solo se permite la adición de agua a la mezcla en estado plástico, en el sitio de obra, hasta recuperar la consistencia de diseño de la mezcla, siempre y cuando se realice antes de que se haya presentado el tiempo de fraguado inicial del concreto y que no se exceda por ningún motivo la relación a/mc de diseño, determinada previamente, verificada por medio de mezclas de prueba y aprobada por el interventor.

En caso de adicionar agua en el sitio de obra, se debe demostrar y registrar de forma documental que la relación a/mc no excede el valor de diseño y que este procedimiento se realizó antes de que se haya presentado el tiempo de fraguado inicial del concreto. Todo lo anterior también debe ser corroborado por el interventor.

También se permite la adición de aditivos súper reductores, los cuales deben ser con-templados desde el diseño inicial.

630.4.7 Descarga, transporte y entrega de la mezcla

El concreto, al ser descargado de mezclado-ras estacionarias, debe tener la consistencia, la trabajabilidad y la uniformidad requeridas para la obra.

Cuando se empleen camiones mezcladores o agitadores, la descarga de la mezcla, el transporte, la entrega y la colocación del concreto deben ser completados en un tiempo máximo de uno coma cinco horas (1,5 h), desde el momento en que el material cementante se añade a los agregados, salvo que el interventor fije un plazo diferente según las condiciones climáticas, el uso de aditivos o las características del equipo de transporte y que así esté definido desde el diseño de la mezcla.

El concreto descargado de camiones mezcladores o de camiones agitadores debe ser entregado con la consistencia, la trabajabilidad y la uniformidad requeridas para la obra. La velocidad de descarga del concreto premezclado debe ser controlada por la velocidad de rotación del tambor, en la dirección de la descarga, con la canaleta o compuerta de descarga completamente abierta. Si es necesario agregar agua adicional a la mezcla para alcanzar o mantener el asentamiento especificado, sin exceder la relación a/mc requerida, se debe mezclar nuevamente el contenido del tambor, por un mínimo de veinte (20) revoluciones a la velocidad de mezclado, antes de proceder a la descarga del concreto. En caso de adicionar agua en el sitio de la obra, se debe cumplir con los requisitos del numeral 630.4.6.2.

El concreto puede ser transportado en camiones tipo volqueta u otro equipo provisto de agitadores, si los documentos del proyecto lo admiten o el interventor aprueba por escrito esta posibilidad. En tal caso, los recipientes deben ser metálicos, lisos en su interior, con las esquinas redondeadas, equipados con compuertas para controlar la descarga y provistos de cobertores adecuados para proteger el concreto contra la intemperie. El concreto transportado en estos equipos debe ser mezclado previamente y entregado con la consistencia y la uniformidad requeridas en la NTC 3318 (ASTM C94). La descarga en el punto de entrega debe ser completada en cuarenta y cinco minutos (45 min) desde que el cemento sea puesto en contacto con los agregados, lapso que el interventor puede variar según las condiciones climáticas del lugar o el uso de aditivos.

A su entrega en la obra, el interventor debe rechazar todo concreto que haya desarrollado algún endurecimiento inicial, así como aquel que no sea entregado dentro del límite de tiempo aprobado o no tenga el asentamiento dentro de los límites especificados.

El concreto que por cualquier causa haya sido rechazado por el interventor, debe ser retirado de la obra y reemplazado por el constructor, a su costa, por un concreto satisfactorio.

630.4.8 Colocación del concreto

630.4.8.1 Preparación para la colocación del concreto

Por lo menos cuarenta y ocho horas (48 h) antes de colocar concreto en cualquier lugar de la obra, el constructor debe notificar por escrito al interventor al respecto, para que este verifique y apruebe los sitios de colocación.

La colocación no puede comenzar, mientras el interventor no haya aprobado el encofrado, el refuerzo, las partes embebidas y la preparación de las superficies que

han de quedar contra el concreto. Dichas superficies deben estar completamente libres de suciedad, lodo, desechos, grasa, aceite, partículas sueltas y cualquier otra sustancia perjudicial. La limpieza puede incluir el lavado por medio de chorros de agua y aire, excepto para superficies de suelo o relleno, para las cuales este método puede no ser el adecuado.

Se debe eliminar toda agua estancada o libre de las superficies sobre las cuales se coloque la mezcla y controlar que, durante la colocación de esta y el fraguado, no se mezcle agua que pueda lavar o dañar el concreto fresco.

Las fundaciones en suelo contra las cuales se coloque el concreto, deben ser humedecidas completamente, o recubrirse con una delgada capa de concreto, si así lo exige el interventor.

630.4.8.2 Requisitos generales

La colocación del concreto se debe efectuar en presencia del interventor, salvo en determinados sitios específicos aprobados previamente por este.

El concreto no se puede colocar cuando esté lloviendo, a no ser que el constructor suministre cubiertas que, a criterio y aprobación del interventor, sean adecuadas para proteger el concreto desde su colocación hasta su fraguado.

Todo el concreto debe ser vaciado en horas de luz solar y su colocación en cualquier parte de la obra no se debe iniciar si no es posible completarla en dichas condiciones, a menos que se disponga de un adecuado sistema de iluminación, aprobado por el interventor.

El concreto no se debe exponer a la acción del agua antes del fraguado final, excepto lo que se dispone en el numeral 630.4.8.5 para el concreto depositado bajo agua. El concreto se debe colocar en un ambiente seco y, durante su colocación o después de ella, no ser expuesto a la acción de aguas o sue-los que contengan soluciones alcalinas, hasta pasado un periodo por lo menos de tres días (3 d), o de agua salada hasta los siete días (7 d). Durante este lapso, el concreto se debe proteger bombeando el agua perjudicial fuera de las formaletas y ataguías.

En todos los casos, el concreto se debe depositar lo más cerca posible de su posición final y no se debe hacer fluir por medio de vibradores. Los métodos utilizados para la colocación del concreto deben permitir una buena regulación de la mezcla depositada, evitando su caída con demasiada presión o chocando con las formaletas o el refuerzo. No se permite la caída libre del concreto desde alturas superiores a un metro (1,0 m), a menos que se compruebe que a una mayor altura el concreto no

presente segregación y cambios en la mezcla que conlleven a reducciones del desempeño, la resistencia y la durabilidad, y debe ser aprobado por el interventor.

Al verter el concreto se debe remover enérgica y eficazmente, para que las armaduras queden perfectamente envueltas, cuidando especialmente los sitios en que se reúna gran cantidad de ellas, y procurando que se mantengan los recubrimientos y separaciones de la armadura.

En todos los casos que sea difícil colocar el concreto junto a las formaletas, debido a las obstrucciones producidas por el acero de refuerzo o por cualquier otra condición, se debe procurar el contacto apropiado entre el concreto y las caras interiores de

las formaletas, vibrando estas últimas por medio de golpes en sus superficies exteriores con mazos de caucho o madera o por medio de vibradores de formaleta.

Cuando se vayan a usar equipos inclina-dos (canoas, canaletas), estos deben tener una longitud máxima de siete metros (7 m), manteniendo un flujo continuo, a una veloci-dad uniforme del concreto, con pendientes según el asentamiento del concreto (norma de ensayo INV E-404), no sobrepasando los valores de la Tabla 630-15.

Tabla 630 — 15. Pendientes máximas de equipos según el asentamiento del concreto

Asentamiento del concreto (mm)	Pendiente (V:H)
10 — 80	1:2
80 — 120	1:3

No se permite la colocación de concreto al cual se haya agregado agua después de salir de la mezcladora. Tampoco se permite la colocación de la mezcla fresca sobre concreto, total o parcialmente endurecido, sin que las superficies de contacto hayan sido preparadas como juntas, según se describe en el numeral 630.4.15.

El constructor debe tener la precaución de no mover los extremos del refuerzo que sobresalga del concreto, por lo menos durante las primeras veinticuatro horas (24 h) luego de colocado el concreto.

A menos que los documentos del proyecto indiquen algo contrario por el tipo de obra, el concreto se debe colocar en capas continuas horizontales cuyo espesor no exceda de treinta centímetros (0,3 m).

Las descargas deben suceder una tras otra, y cada una de ellas se debe colocar y compactar antes de que la precedente haya alcanzado el fraguado inicial, para que no quede una separación entre las mismas. La superficie superior de cada capa de

concreto se debe dejar algo áspera para lograr una liga eficiente con la capa subsiguiente. Cada capa superior debe ser compactada de forma que se evite la formación de una junta de construcción entre ella y la capa inferior.

Las capas que se completen en un día (1 d) de trabajo o que hayan sido colocadas poco antes de interrumpir temporalmente las operaciones, se deben limpiar de cualquier material objetable tan pronto como las superficies sean lo suficientemente firmes para retener su forma. En ningún caso se debe suspender o interrumpir temporalmente el trabajo dentro de los cuarenta y cinco centímetros (45 cm) debajo de la parte superior de cualquier superficie, a menos que los detalles de la obra tengan en cuenta un coronamiento de menos de dicho espesor, en cuyo caso, la junta de construcción se puede hacer en la parte inferior de dicho coronamiento.

El método y la manera de colocar el concreto se deben regular de forma que todas las jun-tas de construcción se coloquen en las zonas de bajo esfuerzo cortante y, en lo posible, en sitios que no sean visibles.

630.4.8.3 Colocación por bombeo

La colocación del concreto por bombeo puede ser permitida dependiendo de la adaptabilidad del método que se va a usar en la obra. El equipo se debe disponer de manera que las vibraciones derivadas de su operación no deterioren el concreto recién colocado.

Al emplear bombeo mecánico, la operación de la bomba debe ser tal que se produzca una corriente continua del concreto, sin bolsas de aire. Cuando se terminen las operaciones de bombeo, en caso de que se vaya a usar el concreto que quede en las tuberías, este se debe expeler de tal manera que no se conta-mine o se produzcan segregaciones.

Al emplear bombeo neumático, el equipo de bombeo se debe colocar lo más cerca posible del depósito de concreto. Las líneas de descarga deben ser horizontales o inclinadas hacia arriba respecto de la máquina de bombeo.

Cuando se utilice equipo de bombeo, siempre se debe disponer de los medios alternativos para continuar la operación de colocación del concreto en caso de que se dañe la bomba. El bombeo debe continuar hasta que el extremo de la tubería de descarga quede completa-mente por fuera de la mezcla recién colocada.

Los equipos de bombeo se deben limpiar cuidadosamente después de cada periodo de operación.

630.4.8.4 Colocación del agregado ciclópeo

La colocación del agregado ciclópeo se debe ajustar al siguiente procedimiento:

La roca, limpia y húmeda, se debe colocar cuidadosamente a mano, sin dejarla caer por gravedad en la mezcla de concreto simple, para no causar daño a las formaletas, a las alcantarillas, en el caso de cabezales, o al concreto adyacente parcialmente fraguado.

En estructuras cuyo espesor sea inferior a ochenta centímetros (80 cm), la distancia libre entre rocas o entre una roca y la superficie de la estructura, no debe ser inferior a diez centímetros (10 cm). En estructuras de mayor espesor, la distancia mínima se aumenta a quince centímetros (15 cm). En estribos y pilas no se puede usar agregado ciclópeo en los últimos cincuenta centímetros (50 cm) debajo del asiento de la superestructura o placa.

Si se interrumpe la fundición, al dejar una junta de construcción se deben dejar rocas sobresaliendo no menos de diez centímetros (10 cm) para formar una llave. Antes de continuar el vaciado del concreto, se debe limpiar la superficie donde se va a colocar el concreto fresco y humedecer la misma con agua limpia.

El concreto ciclópeo no se debe usar en estructuras cuya altura sea menor de sesenta centímetros (60 cm) y/o en las que el espesor sea inferior a treinta centímetros (30 cm).

La proporción máxima del agregado ciclópeo debe ser el cuarenta por ciento (40 %) del volumen total de concreto.

630.4.8.5 Colocación del concreto bajo agua

La construcción de estructuras de concreto bajo agua contempla diferentes técnicas, entre las cuales está el tipo tremie o descargas directas, para ello la mezcla debe ser de alta cohesión (antideslave). En otros casos, se debe estudiar la posibilidad de remover el agua mientras se hace el vaciado del concreto.

En cada caso, se debe revisar el diseño de la mezcla para ajustarla a las condiciones de colocación y debe ser aprobado por el interventor. Se debe verificar la efectividad de la mezcla de concreto antideslave, mediante la realización de una mezcla de prueba y sometiéndola a procedimientos o ensayos de laboratorio, aprobados por el interventor, que demuestren que el producto cumple su propósito.

Cuando haya colocación de concreto bajo agua, este se debe ubicar cuidadosamente en su lugar, en una masa compacta, mediante un sistema de colocación que permita depositarla en una operación continua.

No se debe colocar concreto dentro de corrientes de agua, y las formaletas diseñadas para retenerlo deben ser impermeables. El concreto se debe colocar de tal manera que se logren superficies aproximadamente horizontales, y que cada capa se deposite antes de que la precedente haya alcanzado su fraguado inicial, con el fin de asegurar la adecuada unión entre las mismas.

630.4.8.6 Temperatura del concreto

En condiciones normales de exposición y en concretos convencionales, la temperatura de la mezcla de concreto, inmediatamente antes de su colocación, debe estar entre diez y treinta y cinco grados Celsius ($10~^{\circ}C-35~^{\circ}C$). Cuando existan otras condiciones particulares específicas, ya sean del material, del ambiente o ambas, se deben realizar análisis pertinentes para determinar la temperatura máxima apropiada antes de la colocación, o el tratamiento más adecuado para reducir la temperatura del concreto.

Cuando se pronostique una temperatura ambiente inferior a cuatro grados Celsius (4 °C) durante el vaciado o en las veinticuatro horas (24 h) siguientes, la temperatura del concreto no puede ser inferior a trece gra-dos Celsius (13 °C) cuando se emplee en secciones de menos de treinta centímetros (30 cm) en cualquiera de sus dimensiones, ni inferior a diez grados Celsius (10 °C) para otras secciones.

Durante la colocación, la temperatura no debe exceder de treinta y cinco grados Celsius (35 °C), para que no se produzcan pérdidas en el asentamiento, fraguado falso o juntas frías. Cuando la temperatura de las formaletas metálicas o de las armaduras exceda de cincuenta grados Celsius (50 °C) se deben enfriar mediante rociadura de agua, inmediatamente antes de la colocación del concreto.

En caso de lluvia, se permite la colocación del concreto siempre y cuanto se implementen las acciones necesarias para garantizar la calidad del material y de la estructura.

630.4.9 Recubrimiento

Los recubrimientos del refuerzo en general deben cumplir lo establecido en el diseño de la estructura en los documentos del proyecto, pero en ningún caso estar por debajo de los mínimos establecidos en la NSR (requisitos de recubrimiento del refuerzo convencional y de tendones de preesfuerzo no adheridos).

La tolerancia del recubrimiento debe estar, de igual manera, de acuerdo con la NSR.

630.4.10 Agujeros para drenaje

Los agujeros para drenaje o alivio se deben construir de la manera y en los lugares seña-lados en los documentos del proyecto. Los dispositivos de salida, bocas o respiraderos para igualar la presión hidrostática se deben colocar más abajo que las aguas mínimas y también de acuerdo con lo indicado en los documentos del proyecto.

Los moldes para practicar agujeros a través del concreto pueden ser de tubería metálica, plástica o de concreto, cajas de metal o de madera. Si se usan moldes de madera, estos deben ser removidos después de colocado el concreto.

630.4.11 Vibración

El concreto colocado se debe consolidar mediante vibración interna, hasta obtener la mayor densidad posible, de manera que quede libre de cavidades producidas por partículas de agregado grueso y burbujas de aire, y que cubra totalmente las superficies de los encofrados y los materiales embebidos. Durante la consolidación, el vibrador se debe operar a intervalos regulares y frecuentes, en posición casi vertical y con su cabeza sumer-gida profundamente dentro de la mezcla.

Para lograr la compactación de cada capa antes de que se deposite la siguiente sin demorar la descarga, se debe usar un número suficiente de vibradores, con el fin de consolidar el concreto que se está recibiendo, dentro de los quince minutos (15 min) siguientes a su colocación dentro de las formaletas. Para evitar demoras en el caso de averías, se debe disponer de un (1) vibrador auxiliar en el sitio de la obra para fundiciones individuales hasta de cincuenta metros cúbicos (50 m3), y dos (2) vibradores auxiliares para fundiciones de mayor volumen.

Las vibraciones se deben aplicar en el punto de descarga y donde haya concreto depositado poco antes.

Los vibradores no deben ser empujados rápidamente, sino que se permite que ellos mismos se abran camino dentro de la masa de concreto y se retiren lentamente para evitar la formación de cavidades.

La vibración debe ser tal, que el concreto fluya alrededor del refuerzo y otros elementos que deban quedar embebidos en este y llegue hasta las esquinas de las formaletas.

La vibración no debe ser aplicada sobre el refuerzo, ni forzarse a secciones o capas de concreto que hayan endurecido a tal grado que el concreto no pueda volverse plástico por su revibración.

No se debe colocar una nueva capa de concreto, si la precedente no está debidamente consolidada.

La vibración no se debe usar para transportar mezcla dentro de las formaletas, ni aplicar directamente a estas o al acero de refuerzo, especialmente si ello afecta masas de mezcla recientemente fraguada.

Con el fin de obtener un concreto debida-mente compactado, carente de cavidades, hormigueros y similares, la vibración mecánica debe ser completada con la compactación manual que sea necesaria a lo largo de las superficies de las formaletas, y en las esquinas y puntos donde sea difícil obtener una vibración adecuada.

Las dimensiones de las agujas de los vibra-dores de inmersión y, en general, los tiempos de vibrado deben ser cuidadosamente controlados, de manera que se obtengan las densidades máximas sin sobrevibrar.

En el evento de que se utilicen mezclas autocompactantes, se debe estudiar la conveniencia de usar vibradores o no.

630.4.12 Protección y curado

Las medidas de protección y curado del concreto se deben implementar en todo momento, antes, durante y después de la colocación, con el fin de garantizar el desarrollo de las propiedades del concreto y de la estructura en general.

Los sistemas de protección y curado se deben utilizar, de acuerdo con las características del concreto, las condiciones ambientales en el sitio de la construcción (humedad relativa, temperatura ambiente, velocidad del viento, entre otras) y las características de la estructura. En todo caso se debe seguir lo establecido en el documento ACI 308R, Guía para el curado del concreto. El constructor debe realizar las pruebas necesarias para determinar el método más eficaz y eficiente de curado, el cual debe ser aprobado por el interventor.

En casos especiales, en los documentos del proyecto, el diseñador de la estructura debe establecer los tipos, los métodos, los procedimientos y los tiempos de protección y curado del concreto, específicos para el proyecto.

Se deben tomar todas las precauciones necesarias para proteger el concreto fresco contra las altas temperaturas y los vientos, que puedan causar un secado prematuro y la formación de agrietamientos superficiales. De ser necesario, se deben colocar cortinas protectoras contra el viento, hasta que el concreto haya endurecido lo suficiente para recibir el tratamiento de curado.

Durante el curado del concreto, este no debe estar expuesto a cargas e impactos no previstos por el diseñador.

También, se pueden usar selladores o sellan-tes regidos por la norma ASTM C1315, que al entrar en contacto con el concreto forman una película que endurece y sella, y poseen propiedades especiales como resistencia a los álcalis, resistencia a los ácidos, cualidades adhesivas y resistencia a la degradación por la luz ultravioleta. Estos compuestos ayudan al curado, protegen la estructura de daños causados por la penetración de líquidos per-judiciales para el concreto, brindan mayor durabilidad y minimizan la generación de polvo, algunos mejoran la apariencia del concreto.

630.4.13 Requisito en concretos masivos

Se debe realizar un plan de control de temperatura para la colocación y el curado del concreto masivo, con el fin de tomar todas las medidas pertinentes para no comprometer la resistencia y la durabilidad del concreto. El plan de control debe contener:

- Materiales y dosificación de la mezcla de concreto.
- Elevación de la temperatura ya sea calculada o medida.
- Temperatura máxima del concreto en el momento de su colocación y detalle de las medidas y equipos usados para garantizar que esta no se exceda.
- Descripción de las medidas y los equipos por usar para garantizar que no se exceda la diferencia de temperatura máxima.
- Descripción de los equipos y la metodología para el monitoreo de la temperatura del concreto y el diferencial de temperatura a lo largo del tiempo.
- Ubicación de los sensores de temperatura. La ubicación de estos sensores debe ser determinada por el diseñador en los documentos del proyecto, y como mínimo deben estar ubicados en los puntos en donde se presente la mayor y la menor temperatura.
- Medidas para el manejo y la reducción de la temperatura y del diferencial de la misma.
- Descripción de los procedimientos de curado.
- Descripción de la metodología para retirar la formaleta evitando altos diferenciales de temperatura.

Durante el proceso de fraguado y curado, la temperatura máxima del concreto no debe exceder los setenta grados Celsius (70 °C), y la diferencia de esta entre el centro y la superficie del concreto no debe exceder los diecinueve grados Celsius (19 °C). Cuando se proyecten estructuras con la presencia de concretos masivos, el diseñador estructural puede establecer, en los documentos del proyecto, los

requisitos de temperatura máxima para la verificación del interventor. El constructor debe establecer todas las estrategias necesarias para no sobrepasar dichos valores, y se debe hacer seguimiento a las temperaturas durante los primeros días de construcción.

Se puede usar cemento con bajo o moderado calor de hidratación, o un material cementante con contenido de ceniza volante o escoria clase F. No se deben usar aditivos aceleran-tes. Durante el mezclado, la colocación y el curado de un elemento con concreto masivo, se debe seguir el plan de control de tempera-tura aprobado por el interventor.

Se recomienda seguir la ACI 207.1R, Guía para el concreto masivo.

630.4.14 Remoción de las formaletas y de la obra falsa

El tiempo de remoción de formaletas y obra falsa está condicionado por el tipo y la localización de la estructura, el curado, el clima y otros factores que afecten el endurecimiento del concreto.

El constructor debe cumplir lo establecido por el diseñador estructural en los documentos del proyecto en cuanto a las resistencias mínimas a las cuales se puedan remover las formaletas.

Si las operaciones de campo son controladas por ensayos de resistencia de cilindros de concreto, la remoción de formaletas y demás soportes, se puede efectuar al lograrse las resistencias fijadas en el diseño. Los cilindros de ensayo deben ser curados bajo condiciones iguales a las más desfavorables de la estructura que representan.

La remoción de formaletas y soportes se debe hacer cuidadosamente y en forma tal, que permita al concreto tomar gradual y uniformemente los esfuerzos debidos a su peso propio.

De acuerdo con los lineamientos del diseñador consignados en los documentos del proyecto, el constructor debe presentar al interventor un procedimiento apropiado para el retiro de la obra falsa, de manera tal, que la estructura vaya tomando las cargas en la secuencia indicada por el diseñador de la estructura.

630.4.15 Juntas

Se deben construir juntas de construcción, contracción y dilatación, con las características y en los sitios indicados en los documentos del proyecto. El constructor no puede introducir juntas adicionales o modificar el diseño de

localización de las indicadas en dichos documentos, sin la aprobación del interventor. La resistencia y la durabilidad de la estructura no se debe ver afectada por las juntas.

En superficies expuestas, las juntas deben ser horizontales o verticales, rectas y continuas, a menos que se indique lo contrario. En general, se debe dar un acabado pulido a las superficies de concreto en las juntas y se deben utilizar para las mismas los rellenos, los sellos o los retenedores indicados en los documentos del proyecto.

630.4.16 Acabado

Todas las superficies de concreto deben recibir un acabado inmediatamente después del retiro de las formaletas. El tipo de acabado depende de lo establecido por el diseñador, en los documentos del proyecto, para cada estructura en particular.

Independiente del tipo de acabado establecido por el diseñador en los documentos del proyecto, se deben mantener los recubrimientos mínimos establecidos en el diseño.

630.4.16.1 Acabado convencional

Es el procedimiento usado para la mayoría de las estructuras. Inmediatamente después de remover las formaletas, todas las rebabas y salientes irregulares de la superficie del concreto se deben cincelar a ras de la superficie.

No se permite que sobresalgan elementos de refuerzo estructural como varillas, alambres o elementos no estructurales. En caso de que sobresalgan de la superficie se deben realizar procedimientos de intervención y acabado, aprobados por el interventor.

Cualquier irregularidad de la superficie, como cavidades pequeñas, grandes, profundas u hormigueros, debe ser corregida por el constructor, a su costa, mediante procedimientos adecuados para cada situación, previamente aprobados por el interventor.

Las zonas con hormigueros excesivos pue-den ser causa de rechazo de la estructura, en cuyo caso, el constructor debe demoler y reconstruir, a su costa, la parte afectada.

Todas las juntas de construcción y de dilatación en la obra terminada, se deben dejar cuidadosamente trabajadas y sin restos de mortero y concreto. El relleno de las juntas.

debe quedar con los bordes limpios en toda su longitud.

630.4.16.2 Acabado de pisos de puentes

Si el piso va a ser cubierto con una capa asfáltica, basta con asegurar que la superficie de concreto sea correctamente nivelada, para que presente las pendientes transversales indicadas en los documentos del proyecto.

Si el piso del puente se va a usar como capa de rodadura, debe ser sometido a las operaciones de acabado descritas en el artículo 500, para los pavimentos de concreto hidráulico.

630.4.16.3 Acabado de losas de pisos

Si los documentos del proyecto no establecen otra cosa diferente, su acabado debe ser como el descrito en el artículo 500, para los pavimentos de concreto hidráulico, exceptuando el macrotexturizado.

630.4.16.4 Acabado de andenes de concreto

El acabado superficial de los andenes debe ser el establecido en los documentos del proyecto, evitando superficies resbaladizas.

El diseño debe incluir la modulación y ejecución de las juntas, en cuyo caso se deben seguir los mismos procedimientos establecidos en el artículo 500.

630.4.17 Limpieza final

Al terminar la obra, y antes de la aceptación final del trabajo, el constructor debe retirar del lugar toda obra falsa, materiales excavados no utilizados, desechos, basuras y construcciones temporales, restaurando en forma aceptable para el interventor, toda propie-dad, tanto pública como privada, que pudiera haber sido afectada durante la ejecución de este trabajo y dejar el lugar de la estructura limpio y presentable. Cumpliendo todos los requisitos de manejo de Residuos de Construcción y Demolición (RCD) establecidos en la legislación colombiana.

630.4.18 Afectaciones por sismo

En la eventualidad de que se produzca un sismo durante el proceso de curado, el constructor debe tener especial cuidado en efectuar una revisión detallada del concreto colocado y de la estructura, luego de su ocurrencia, informando al interventor sobre cualquier daño motivado por el fenómeno. Sin perjuicio de ello, si así lo estima el interventor, se deben realizar los ensayos que considere convenientes para verificar la calidad del concreto, pudiendo ordenar el retiro de este si, a su criterio, los ensayos realizados revelaren alteraciones al concreto colocado.

630.4.19 Conservación

El concreto hidráulico debe ser mantenido en perfectas condiciones por el constructor, cumpliendo los requisitos mínimos establecidos en el presente artículo, hasta el recibo definitivo de los trabajos, sin que ello implique costo adicional alguno para INVÍAS.

Todo concreto defectuoso o deteriorado que no cumpla las características establecidas en los documentos del proyecto, debe ser intervenido por el constructor para llevarlo a las condiciones de diseño, sin costo adicional para INVÍAS. En todo caso, los procedimientos deben ser aprobados por el interventor, cualquiera sea el tipo de intervención. Se deben dejar registrados, en los documentos del proyecto, las reparaciones realizadas y el método de reparación.

630.4.20 Manejo ambiental

En adición a los aspectos generales indica-dos en el artículo 106, Aspectos ambientales, todas las labores de ejecución de obras de concreto estructural se deben realizar teniendo en cuenta lo establecido en los estudios o evaluaciones ambientales del proyecto y las normas y disposiciones vigentes sobre la conservación del ambiente y los recursos naturales.

Todas las actividades que se ejecuten en cumplimiento a esta especificación deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas actividades deben estar incluidas en los costos del proyecto, por tanto, no deben ser objeto de reconocimiento directo en el contrato.

Se debe asegurar que la adquisición de los recursos y el manejo de los residuos cumplan los requisitos legales ambientales vigentes. Se deben realizar todos los estudios, los tramites, los procedimientos y las actividades en obra necesarios para cumplir con las normas ambientales. Se debe entregar al interventor la documentación de la gestión ambiental.

630.5 Condiciones para el recibo de los trabajos

Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales por parte del constructor, con la supervisión y la aprobación del interventor:

- Verificar el estado y el funcionamiento de todo el equipo de construcción.
- Supervisar la correcta aplicación del método aceptado previamente, en cuanto a la elaboración y manejo de los agregados, así como la manufactura, el

transporte, la colocación, la consolidación, la ejecución de juntas, el acabado y el curado de las mezclas.

- Comprobar, mediante ensayos por parte del constructor, que los materiales por utilizar cumplan los requisitos de calidad exigidos por la presente especificación.
- Efectuar los ensayos necesarios para el control de la mezcla.
- Vigilar la regularidad en la producción de los agregados y en la mezcla de concreto, durante el periodo de ejecución de las obras.
- Verificar el cumplimiento de todas las medidas requeridas sobre seguridad y ambiente.
- Tomar, de manera cotidiana, muestras de la mezcla elaborada para determinar su resistencia, de acuerdo con el plan de calidad, previamente aprobado por el interventor, y la NSR.
- Realizar medidas para determinar las dimensiones de la estructura y comprobar la uniformidad de la superficie.
- Medir, para efectos de pago, los volúmenes de obra satisfactoriamente ejecutados.

Los laboratorios en donde se realicen los ensayos necesarios para el control de la calidad de los materiales del concreto y el control de la calidad del concreto deben ser empresas legalmente constituidas que cuenten con experiencia y/o trayectoria en ejecución de pruebas y ensayos de control de calidad de materiales, que puedan demostrar apropiadamente la competencia de su personal de laboratorio y cuyos informes de resulta-dos informados contengan la aprobación y la autorización para su emisión, mediante la firma del responsable técnico facultado para ello. El laboratorio debe contar con todo el equipamiento principal y auxiliar necesario para el correcto desempeño de sus actividades y asegurar que estos cuenten con la exactitud y la precisión adecuadas para lograr resultados válidos. El laboratorio debe contar con un programa de calibración de sus equipos y se debe asegurar de que los resultados de la medición sean trazables al SI, mediante alguna de las siguientes alternativas:

- La calibración de los equipos proporcionados por un laboratorio de metrología acreditado por ONAC.
- La comparación directa o indirecta a patrones nacionales o internacionales que cuenten con unidades del SI.
- Los valores certificados de materiales de referencia (MRC) proporcionados por productores competentes con trazabilidad metrológica establecida al SI.

El constructor es el responsable de garantizar que todos los ensayos necesarios se realicen. Los informes de ensayos deben ser entregados rutinariamente al interventor, al profesional a cargo del diseño, a los provee-dores de material y a la autoridad competente que verifique el cumplimiento de la calidad o que tome acciones correctivas.

630.5.1 Control de materiales

Para cada uno de los materiales se deben realizar los ensayos y procedimientos definidos en el plan de calidad. Si estos no son satisfactorios, se debe rechazar el material y el concreto que se haya elaborado con este.

Además, cada vez que lo considere necesario, el interventor debe efectuar u ordenar la ejecución de los ensayos de control que permitan verificar la calidad del material.

Se debe tener un registro de todos los ensayos y procedimientos de calidad, los cuales deben ser presentados al interventor.

630.5.1.1 Calidad del cemento hidráulico

Para todo cemento que llegue a la central de fabricación, sea esta de propiedad del constructor o de un proveedor, se deben realizar los ensayos de las normas mencionadas en el artículo 501 y con la frecuencia especificada en el mismo. Los resultados de los ensayos deben ser remitidos para su aprobación por parte del interventor.

630.5.1.2 Calidad de las adiciones suplementarias

El constructor debe verificar, mediante ensayos, las características de las adiciones suplementarias definidas en el plan de calidad o las especificadas en los documentos del proyecto. Para cada adición se deben verificar los requisitos de las normas definidas en el numeral 630.2.1.2 con la siguiente frecuencia:

- Una (1) vez por cada mes de ejecución de las obras y como mínimo tres (3) veces a intervalos convenientemente espaciados si la obra dura menos de tres (3) meses.
- Cada vez que se modifique el material suministrado.
- Cada vez que el interventor lo solicite.

630.5.1.3 Calidad del agua

Se deben ejecutar los ensayos relacionados en la Tabla 630 — 5 y la Tabla 630 — 6. El agua usada en la mezcla y el curado debe cumplir los límites establecidos en estas, y solo se acepta si se cumplen dichos límites.

630.5.1.4 Calidad de los agregados

De cada fuente de agregados por utilizar en la producción de concreto y para cualquier volumen previsto, se deben tomar cuatro (4) muestras y se deben ejecutar los ensayos que permitan verificar el cumplimiento de los requisitos establecidos en los numerales 630.2.1.3.1 y 630.2.1.3.2.

Para el caso de los agregados ciclópeos, de igual forma se deben realizar y documentar los ensayos para la verificación del cumplimiento de los requisitos mencionados en este artículo.

Los resultados de todas estas pruebas deben satisfacer las exigencias de los numerales anteriormente citados. Los agregados que no las cumplan no pueden ser utilizados en la elaboración de la mezcla de concreto, a no ser que se realicen pruebas o ensayos adicionales que demuestren que, la mezcla de concreto cumple las características establecidas para cada proyecto y sean aprobadas por el interventor.

En el caso de uso de agregados reactivos, se deben evaluar procedimientos o diseños de mezcla que permitan mitigar esa condición, previa aprobación del interventor. El proceso de evaluación de la reactividad y el diseño del plan de mitigación se debe realizar conforme a los requisitos de este artículo, en el numeral 630.2.6.1.

Durante la etapa de producción, el interventor debe examinar los acopios y ordenar el retiro de los agregados que, a simple vista, presenten restos vegetales, materia orgánica o tamaños superiores al máximo especificado. También, debe ordenar acopiar por separado aquellos que presenten alguna anomalía de aspecto (tal como distinta coloración), segregación, partículas alargadas o aplanadas y debe vigilar la disposición de todos los acopios y el estado de sus elementos separadores.

Además, sea que el constructor elabore la mezcla o tenga un proveedor que se la suministre, se debe verificar la calidad de los agregados, mediante la realización de los ensayos que se relacionan en la Tabla 630-16, con la frecuencia indicada en ella.

La curva granulométrica de cada ensayo individual, se debe ajustar a la franja de tolerancia construida a partir de la granulometría de diseño de la mezcla (fórmula de trabajo), con los límites fijados en la Tabla 630 - 18.

En caso de que los valores obtenidos excedan la franja de tolerancia definida para la fórmula de trabajo, pero no se salgan de las franjas normativas, el proveedor o el constructor deben preparar en laboratorio una mezcla con la gradación defectuosa, la cual se debe someter a todas las pruebas de valoración descritas en el presente artículo. En caso de que no cumpla todos los requisitos, el constructor debe demoler, a sus expensas, los elementos cuestionados y los debe reponer, sin costo alguno para INVÍAS.

Tabla 630- 16. Ensayos de verificación sobre los agregados para concreto estructural

Característica	Norma de ensayo	Frecuencia (Nota 1)		
Composición (F)				
Granulometría	INV E-213	1 por Jornada		
Módulo de finura	INV E-213	1 por Jornada		
Dureza, agregado grueso (O)				
Desgaste en la máquina de Los Ángeles	INV E-218	1 por mes		
Durabilidad (O)				
Pérdidas en ensayo de solidez en sulfatos (Nota 2)	INV E-220	1 por mes		
Reactividad de los agregados	Ver numeral 630.2.6.1.3	Tabla 630 — 17		
Limpieza (F)				
Terrones de arcilla y partículas deleznables	INV E-211	1 por semana		
Partículas livianas	INV E-221	1 al inicio del proyecto, 1 cada cambio de fuente y 1 cada 2,5 meses		
Material que pasa el tamiz de 0,075 mm (nro. 200)	INV E-214	1 por semana		
Geometría de las partículas (F)				
Índice de alargamiento	INV E-230	1 por semana		
Índice de aplanamiento	INV E-230	1 por semana		

Nota 1: se entiende como Jornada, un día (1 d) de producción de agregados.

Nota 2: el ensayo se puede realizar con sulfato de sodio o sulfato de magnesio.

Tabla 630 - 17. Ensayo para determinar la reactividad de los agregados (RAA)

Casos	Frecuencia mínima	
Al inicio de todos los proyectos.	Se debe tomar una (1) lectura inicial del agregado de la fuente a usar	
En todos los proyectos cuando se presente un cambio de fuente de agregado o de material cementante.	Se debe tomar una (1) lectura cada vez que se presente este caso	
En todos los proyectos, excepto cuando se presente riesgo de RAA clase SC4.	Se debe tomar una (1) lectura cada 6 meses	
En proyectos con riesgo de RAA clase SC4.	Se debe tomar una (1) lectura cada 3 meses	

Cada vez que se realicen los ensayos para la evaluación de la reactividad del agregado, a partir de los resultados, se debe establecer la

mitigación de acuerdo con lo indicado en el numeral 630.2.6.1. El interventor puede modificar la frecuencia de los ensayos a la mitad de lo indicado en la Tabla 630-16, siempre que considere que los materiales son suficientemente o homogéneos o si en el control de recibo de la obra terminada hubiese aceptado sin objeción diez (10) lotes consecutivos.

Tamiz (mm / U.S. Standard) 4,75 2,36 1,18 0,600 0,300 0,150 ≥ 9,5 0,075 ≥ 3/8 Tolerancia Nro. 4 Nro. 8 Nro. 16 Nro. 30 Nro. 50 Nro. 100 Nro. 200 Pulgada Puntos de porcentaje (%) sobre la masa seca de los agregados ± 3 ±1

Tabla 630 — 18. Tolerancias granulométricas respecto de la fórmula de trabajo

630.5.1.5 Calidad del acero

El constructor debe presentar certificaciones periódicas originales de los fabricantes o de los proveedores del acero empleado en pasa-dores, barras de amarre y refuerzos requeridos para la construcción del pavimento, donde se demuestre que este satisface a cabalidad las exigencias del presente artículo. Ninguna certificación puede tener una antigüedad superior a treinta días (30 d).

Así mismo, cada vez que lo considere conveniente, el interventor debe ordenar o efectuar las pruebas necesarias para verificar que la calidad del acero empleado cumple las exigencias de este artículo, y lo establecido en el artículo 640.

630.5.1.6 Calidad de los aditivos, adiciones complementarias y productos químicos de curado

El constructor debe presentar certificaciones periódicas de los fabricantes o de los proveedores de estos productos, que brinden garantía en cuanto a la calidad y a la conveniencia de su utilización, para la revisión y la eventual aprobación de uso por parte del interventor.

630.5.2 Control del concreto

630.5.2.1 Control de requisitos de durabilidad

En el caso de que el proyecto tenga una especificación por desempeño, cuando sea aplicable, se deben controlar las características de durabilidad especificadas para el concreto en el numeral 630.2.6.1, siguiendo las normas de ensayo aplicables. Se debe definir el lote como una jornada de trabajo.

Tabla 630 — 19. Control de requisitos de durabilidad por método de desempeño verificado

Requisitos de durabilidad	Frecuencia	
Penetración del ion cloruro del concreto	un (1) control al inicio del proyecto y un (1) control máximo cada 30 lotes	
Permeabilidad al agua del concreto	un (1) control al inicio del proyecto y un (1) control máximo cada 30 lotes	
Contracción	un (1) control al inicio del proyecto y un (1) control máximo cada 30 lotes	
Resistencia a sulfatos	Solo en la validación de la mezcla de prueba	

Para el caso de los proyectos que tengan una especificación por el método prescriptivo, se deben cumplir los requisitos límite de los tipos de exposición en el que se haya clasificado la estructura, los requisitos presentados en el numeral 630.2.6.1. De igual forma, se deben cumplir los requisitos por clase de concreto y resistencia presentados en los numerales 630.2.6.2 y 630.2.6.3. Entre estos requisitos está la relación a/mc, la resistencia (f'c), el contenido de aire, el material cementante y el contenido máximo de ion cloruro soluble en agua en el concreto. Todos estos parámetros se deben establecer durante la validación de la mezcla de prueba, deben ser aprobados por el interventor y se deben mantener durante todo el proyecto. En caso de requerir un cambio de estos parámetros, se debe realizar nuevamente una mezcla de prueba con todos los ensayos pertinentes, verificar que se cumplan los requisitos de durabilidad, resistencia y clase de concreto, y debe ser aprobada nuevamente por el interventor. Todo este control debe quedar documentado.

Se deben reportar los valores obtenidos. En cada característica, el concreto colocado debe cumplir los rangos máximos o mínimos que le son aplicables. Las estructuras en

concreto, que no cumplan una o varias características de durabilidad especificadas, deben ser demolidas y sus escombros transporta-dos a los sitios aprobados para su recepción, todo a expensas del constructor, quien ade-más debe reemplazar estas estructuras con otras que cumplan todas las exigencias de la especificación, sin que ello implique costo alguno para INVÍAS.

630.5.2.2 Control de los requisitos por clase de concreto

Cuando aplique se deben cumplir los requisitos límite por clase de concreto, requisitos presentados en el numeral 630.2.6.2. Todos estos parámetros se deben establecer durante la validación de la mezcla de prueba, deben ser aprobados por el interventor y se deben mantener durante todo el proyecto. En caso de requerir un cambio de estos parámetros se debe realizar nuevamente una mezcla de prueba

con todos los ensayos pertinentes, verificar que se cumplan los requisitos de durabilidad, resistencia y clase de concreto, y debe ser aprobada nuevamente por el interventor. Todo este control debe quedar documentado.

630.5.2.3 Dosificación

La mezcla se debe efectuar en las proporciones establecidas en la fórmula de trabajo; se admiten las variaciones establecidas en la NTC 3318 (ASTM C94).

La tolerancia del agua de mezclado se debe medir con la tolerancia especificada, corregida según la condición de humedad de los agregados y la cantidad de aditivo líquido, si se usa.

Para las mezclas dosificadas por fuera de estos límites, el constructor las debe tratar como producto no conforme para llevarlas a las características requeridas y, en caso de no cumplir, deben ser rechazadas por el interventor.

630.5.2.4 Consistencia

Se debe controlar la consistencia de cada carga entregada, para lo cual se debe tomar una muestra representativa de ella que se debe someter al ensayo de asentamiento (según la norma INV E-404/NTC 396) o flujo libre (según la NTC 5222), cuyo resultado debe estar dentro de los límites indicados en los documentos del proyecto para cada tipo de concreto, según lo mencionado en el numeral 630.4.2. Por ningún motivo se per-mite la adición de agua al concreto elaborado para incrementar su asentamiento o flujo, según el tipo de mezcla. La tolerancia del asentamiento debe estar en conformidad con el ACI 117, Especificación para la tolerancia de estructuras de concreto y materiales.

630.5.2.5 Contenido de aire

Si en el diseño de la mezcla se ha especificado un contenido de aire, se debe controlar en cada uno de los tres (3) primeros camiones que lleguen a la obra en la jornada de trabajo y en los tres (3) primeros después de cada interrupción, programada o no, durante el curso de dicha jornada, según la norma de ensayo INV E-406 (NTC 1032), la cual describe el método a presión. También, se permite medir el contenido de aire siguiendo la norma de ensayo ASTM C173. Los resultados deben corresponder al valor establecido al definir la fórmula de trabajo. Si el resultado de la muestra de algún camión está por fuera de los límites de tolerancia, se debe tomar una segunda muestra del mismo camión y se repite el ensayo. Si este último se encuentra dentro de los límites de tolerancia especificada se debe aceptar el viaje. En caso contrario, se debe rechazar. Si se rechaza el concreto de los tres (3)

camiones consecutivos por este motivo, se debe suspender la producción de la mezcla y la construcción, hasta que se detecten y corrijan las causas de la anomalía.

630.5.2.6 Peso unitario y densidad del concreto

Se debe controlar el peso unitario del concreto en estado fresco siguiendo la norma de ensayo INV E-405 (NTC 1926).

A los testigos extraídos se les debe determinar su densidad, según la norma de ensayo ASTM C642 (NTC 5653).

En principio, los resultados deben ser reporta-dos, pero no se deben emplear como criterio para aceptación o rechazo de la estructura construida, salvo que los documentos del proyecto o una especificación particular así lo indiquen y establezcan un criterio para su calificación. Sin embargo, si la densidad promedio

de los núcleos de un lote es menor de noventa y siete por ciento (97 %), o algún núcleo presenta densidad menor de noventa y seis por ciento (96 %), con respecto a la densidad del concreto elaborado al definir la fórmula de trabajo, es indispensable que el constructor mejore el vibrado del concreto, de manera que los requisitos establecidos anteriormente se logren en las posteriores verificaciones.

En cualquier caso, la presencia de hormigueros en los núcleos hace obligatoria la demolición del elemento de concreto estructural afectado y su reconstrucción con elementos que cumplan todos los requisitos de esta especificación.

630.5.2.7 Temperatura del concreto en estado fresco

Se debe controlar la temperatura del concreto en estado fresco, de manera que se cumpla la NTC 3357 (ASTM C1064). Si la temperatura del concreto, medida en la entrega de este, no cumple los requisitos del numeral 630.4.8.6 o el plan de control de temperatura para el caso de concretos masivos, se debe realizar inmediatamente una medición adicional sobre una nueva muestra del mismo despacho. Si no se cumplen los requisitos de temperatura, el concreto no se puede usar en obra.

630.5.2.8 Módulo elástico del concreto

La determinación del módulo de elasticidad del concreto se debe realizar cuando, en los documentos del proyecto, se requiera la determinación del módulo de elasticidad o por solicitud del interventor. Sobre los núcleos cilíndricos extraídos de la estructura

de concreto se debe determinar el módulo de elasticidad, mediante el procedimiento descrito en la norma de ensayo INV E-424 (NTC 4025).

El valor promedio de cada lote debe ser reportado y se debe emplear, si corresponde, en la revisión de los diseños estructurales de los documentos del proyecto.

630.5.2.9 Resistencia

Las muestras de concreto para fines de determinar la resistencia especificada deben ser tomadas, elaboradas, curadas y ensaya-das bajo las normas INV E-420/NTC 550 e INV E-410/NTC 673.

Las muestras para los ensayos de resistencia de cada tipo de concreto colocado en obra, se deben tomar por lo menos una (1) vez al día, o cada cuarenta metros cúbicos (40 m3) de concreto, o cada doscientos metros cuadrados (200 m2) de superficies de losas y muros.

La resistencia del concreto debe ser evaluada, con fines de aceptación o rechazo, de acuerdo con el procedimiento y los parámetros establecidos en la NSR.

Si en algún momento no se cumplen las exigencias establecidas en la NSR, se deben tomar las acciones contempladas en este documento, en la sección «Investigación de los resultados de ensayo con baja resistencia».

Se deben tomar tres (3) núcleos por cada valor no conforme. Los núcleos deben ser extraídos, deben ser colocados en recipientes O bolsas herméticas de tal forma que la hume-dad se preserve, deben ser transportados al laboratorio y se deben ensayar de acuerdo con la norma INV E-418/NTC 3658.

Se considera aceptable la resistencia del concreto de la zona representada por los núcleos, si el promedio de la resistencia a la compresión de los tres (3) núcleos, corregida por la esbeltez, es al menos igual al ochenta y cinco por ciento (85 %) de la resistencia especificada (f'c) en los documentos del proyecto, siempre que ningún núcleo tenga menos del setenta y cinco por ciento (75 %) de dicha resistencia. Cuando los núcleos den valores erráticos, se debe permitir extraer núcleos adicionales de la misma zona.

Si los criterios de aceptación anteriores no se cumplen, el constructor puede solicitar que, a sus expensas, se hagan pruebas de carga en la parte dudosa de la estructura conforme lo especificado en la NSR. Si estas pruebas dan un resultado satisfactorio, se acepta el concreto en discusión. En caso contrario, el constructor debe adoptar las medidas correctivas que solicite el interventor, las cuales pueden incluir la demolición parcial o total de la estructura, si fuere necesario, y su posterior reconstrucción, a costa del constructor, sin costo alguno para INVÍAS.

Siempre que se produzcan rechazos, se debe reiniciar el promedio de las medias móviles (fm) para las evaluaciones subsiguientes.

630.5.2.10 Curado

Toda fundida de concreto que no sea correctamente curada, puede ser rechazada por el interventor. Si se trata de una superficie de contacto con fundidas subsecuentes de concreto, deficientemente curada, el interventor

puede exigir la remoción de una capa hasta de cinco centímetros (5 cm) de espesor, por cuenta del constructor, y su consecuente reposición con una mezcla satisfactoria, correctamente curada.

Los especímenes curados en las mismas condiciones de la obra, deben dar como mínimo el ochenta y cinco por ciento (85 %) de la resistencia de los especímenes curados en agua para control de calidad. El cumplimiento de este requisito es garantía de que se está realizando un curado efectivo en obra.

Solo para efectos de aceptación y rechazo de la estructura construida se debe medir la resistencia del concreto, tanto en especímenes de control de calidad de obra como en especímenes de control del desarrollo de resistencia del concreto ya instalado, mediante la disposición de cilindros de control de la calidad al pie del elemento y/o extracción y ensayo de núcleos (norma INV E-418/NTC 3658). Lo anterior para determinar la efectividad de las labores de compactación y curado, si existe alguna incertidumbre con la estructura o con la resistencia en probetas. Únicamente, se debe permitir el uso de ensayos no destructivos, donde se obtuvieron resultados de ensayos con baja resistencia y es necesario realizar una investigación. Los casos en los que se deben realizar estos ensayos son los siguientes:

- Inadecuados procesos de compactación (ACI 309R, Guía para la consolidación del concreto).
- Inadecuados procesos de cuidado y con-trol de muestras (ACI 308R, Guía para curado del concreto; INV E-420/NTC 550).
- Cuando el curado en la estructura genere reducciones en la resistencia mayores de un quince por ciento (15 %) respecto a los obtenidos bajo la condición estándar.

Los ensayos no destructivos que se permiten son los contenidos en el ACI 228.2R, Reporte de métodos de ensayo no destructivos para la evaluación del concreto en estructuras. Estos ensayos se pueden usar, si se realiza una calibración del método con el concreto de obra, empleando un número suficiente de muestras, y con la aprobación del interventor. Estos ensayos son válidos principalmente para hacer

comparaciones del concreto en la misma estructura, mas no para evaluar la resistencia.

630.5.3 Calidad del producto terminado

Todo concreto donde los materiales, las mezclas y el producto terminado excedan las tolerancias de esta especificación, debe ser corregido por el constructor, quien debe asumir los costos adicionales, de acuerdo con las indicaciones del interventor y la aprobación de este. Dicha corrección puede contemplar, inclusive, la demolición parcial o total de la estructura.

630.5.3.1 Desviaciones máximas admisibles en las dimensiones laterales

- Vigas pretensadas y postensadas: de menos cero coma cinco centímetros a más uno coma un centímetro (- 0,5 cm a + 1,1 cm).
- Vigas, columnas, placas, pilas, muros y estructuras similares de concreto reforzado: de menos un centímetro a más dos centímetros (- 1,0 cm a + 2,0 cm).
- Muros, estribos y cimientos: de menos dos centímetros a más cinco centímetros (- 2,0 cm a + 5,0 cm).

630.5.3.2 Desplazamiento

El desplazamiento de las obras, con respecto a la localización indicada en los documentos del proyecto, no puede ser mayor que la desviación máxima positiva (+) indicada para las desviaciones en el numeral 630.5.3.1.

630.5.3.3 Otras tolerancias

- Espesores de placas: de menos un centímetro a más dos centímetros (- 1,0 cm a + 2,0 cm).
- Cotas superiores de placas y andenes: de menos un centímetro a más un centímetro (- 1,0 cm a + 1,0 cm).
- Recubrimiento del refuerzo: más o menos diez por ciento (± 10 %).
- Espaciamiento entre varillas: de menos dos centímetros a más dos centímetros (- 2,0 cm a + 2,0 cm).

Se deben cumplir los requisitos de la ACI 117, Especificación para la tolerancia de estructuras de concreto y materiales; para las especificaciones de tolerancia que no se presentan en este documento.

630.5.3.4 Regularidad de la superficie

La superficie no puede presentar irregularidades que superen los límites que se indican a continuación, al colocar sobre esta una regla de tres metros (3 m).

- Placas y andenes: cero coma cuatro centímetros (0,4 cm).
- Otras superficies de concreto simple o reforzado: un centímetro (1,0 cm).
- Muros de concreto ciclópeo: dos centímetros (2,0 cm).

630.5.4 Defectos a edades tempranas

Si se presentan fisuras a una edad temprana, se deben revisar detalladamente las mezclas utilizadas, los asentamientos medidos, el manejo de las películas o el procedimiento de protección y curado, las condiciones ambientales y el concreto y, en general, todos los elementos que puedan haber incidido en la ocurrencia del fenómeno.

Se deben tomar medidas de corrección y reparación, de acuerdo con el origen de estos defectos, las cuales deben ser asumidas por el constructor y aprobadas por el interventor.

En todos los casos, el constructor debe presentar, previamente, un documento con las acciones correctivas propuestas, incluyendo materiales, dimensiones y procedimientos que pretende utilizar para la reparación.

630.6 Medida

La unidad de medida del concreto estructural debe ser el metro cúbico (m3), aproximado a la décima (0,1), de mezcla de concreto real-mente suministrada, colocada y consolidada en obra, debidamente acabada y curada; aprobada por el interventor.

El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma de ensayo INV E-823.

El volumen se debe determinar multiplicando la longitud horizontal, medida a lo largo de la estructura, por el ancho y el espesor especificados en los documentos del proyecto. No se debe medir, para los fines de pago, ninguna obra ejecutada por fuera de las dimensiones o líneas establecidas en los documentos del proyecto.

De los volúmenes calculados se deben deducir los correspondientes a las tuberías de drenaje y elementos de acero, excepto los ocupados por el acero de refuerzo y de prees-fuerzo.

De los volúmenes calculados se deben deducir los correspondientes a las tuberías de drenaje y elementos de acero, excepto los ocupados por el acero de refuerzo y de prees-fuerzo.

630.7 Forma de pago

El pago se debe hacer al precio unitario del contrato por toda obra ejecutada, de acuerdo con esta especificación y aprobada por el interventor.

El precio unitario debe cubrir todos los cos-tos de adquisición, obtención de permisos y derechos de explotación y alquiler de las fuentes de las cuales se extraen los agregados pétreos, así como el descapote y la preparación de las zonas por explotar y la adecuación paisajística de las fuentes para recuperar sus características hidrológicas superficiales al terminar la explotación.

Debe cubrir, también, todos los costos de construcción o mejoramiento de las vías de acceso a las fuentes, y los de la explotación de ellas; la selección, la trituración y el eventual lavado y la clasificación de los materiales pétreos; el suministro, el almacenamiento, los desperdicios, los cargues, los transportes, los descargues y las mezclas de todos los mate-riales constitutivos de la mezcla cuya fórmula de trabajo se haya aprobado, incluyendo los aditivos, adiciones suplementarias y complementarias.

El precio unitario debe incluir, también, los costos por concepto de patentes utilizadas por el constructor; el suministro, la instalación y la operación de los equipos; la preparación de la superficie de las excavaciones si no está contemplada en el artículo 600; el suministro de materiales y accesorios para las formaletas y la obra falsa y su construcción y remoción; el diseño y la elaboración de las mezclas de concreto, su cargue, su transporte al sitio de la obra, la colocación y el vibrado; el suministro y la aplicación del producto para el curado del concreto terminado, la ejecución de jun-tas y de agujeros para drenaje, el acabado, la limpieza final de la zona de las obras y, en general, todo costo relacionado con la correcta ejecución de los trabajos especificados.

También, debe incluir el costo de la señalización preventiva y el ordenamiento del tránsito automotor durante la ejecución de los trabajos, y los costos de administración e imprevistos y la utilidad del constructor.

Las obras de concreto que estén cubiertas por otro ítem de pago, tampoco se consideran incluidas en el presente artículo.

El acero de refuerzo se debe medir y pagar de acuerdo con el artículo 640 y el de prees-fuerzo de acuerdo con el artículo 641.

630.8 Ítem de pago

630.8 Ítem de pago

Ítem	Descripción	Unidad
630.1	Tipo de concreto	Metro cúbico (m³)

Nota: se debe elaborar un ítem de pago para cada tipo de concreto que tenga el proyecto. Cada tipo de concreto se debe describir completamente, de acuerdo con las indicaciones del numeral 630,2.6.

ÍTEM DE PAGO

630.1.1 Concreto Clase A (28 MPA) alcantarillas

4.3. RELLENO PARA ESTRUCTURAS

Este trabajo consiste en la colocación en capas, humedecimiento o secamiento, conformación y compactación de los materiales adecuados provenientes de la misma excavación, de los cortes o de otras fuentes, para rellenos a lo largo de estructuras de concreto y alcantarillas, previa la ejecución de las obras de drenaje y subdrenaje contempladas en el proyecto o autorizadas por el Interventor.

Incluye, además, la construcción de capas filtrantes por detrás de los estribos, muros de contención y otras obras de arte, en los sitios y con las dimensiones señalados en los planos del proyecto o indicados por el Interventor, en aquellos casos en los cuales dichas operaciones no formen parte de otra actividad de las presentes especificaciones o de una especificación particular.

610.2 MATERIALES

Los materiales que se empleen en la construcción de rellenos para estructuras deberán provenir de las excavaciones del proyecto, de préstamos laterales o de fuentes aprobadas; estarán libres de sustancias deletéreas, de materia orgánica, raíces y otros elementos perjudiciales; no tendrán características expansivas ni colapsables. Su empleo deberá ser autorizado por el Interventor.

Los documentos del proyecto indicarán los tipos de material por utilizar en las diferentes partes de los rellenos para estructuras. En los siguientes numerales se presentan las características de los materiales típicos que se usan en estos rellenos; los diferentes Artículos, así como las especificaciones particulares, pueden establecer requisitos adicionales o diferentes a los aquí mencionados para cada uno de los tipos de material de relleno.

610.2.1 Suelos

Deben cumplir con lo establecido en el numeral 220.2.2.1 del artículo 220, Terraplenes, con las precisiones establecidas en la Nota de la Tabla 610-1. Igualmente, la muestra que se tome para la prueba de índice de colapso se debe fabricar con la densidad mínima exigida en el numeral 610.5.2.2.1 y con la humedad correspondiente a esa densidad en el lado seco de la curva de compactación.

610.2.2 Recebo

El material de recebo debe cumplir los requisitos de calidad que se indican en la Tabla 610 - 1; además, ajustarse a alguna de las granulometrías que se indican en la Tabla 610 - 2.

Tabla 610 - 1. Requisitos para material de recebo

Característica	Norma de ensayo	Requisito			
Caracteristica	Norma de ensayo	Recebo tipo 1	Recebo tipo 2		
Dureza (O)					
Desgaste en la máquina de los Ángeles (Gradación A), máximo (%) - Quinientas (500) revoluciones (%)	INV E-218	50	65		
Limpleza (F)					
Límite líquido, máximo (%)	INV E-125	45	45		
Índice de plasticidad, máximo (%)	INV E-125 e INV E-126	10	12		
Contenido de materia orgánica, máximo (%)	INV E-121 / UNE 103204	1,0	1,0		
Expansión en prueba CBR, máximo (%) (Nota)	INV E-148	2,0	2,0		
Resistencia del material (F)					
CBR de laboratorio, mínimo (%) (Nota)	INV E-148	10	10		
Expansión en prueba CBR, máximo (%) (Nota)	INV E-148	2,0	2,0		

Nota: los valores de CBR y expansión indicados en estos requisitos están asociados al grado de compactación mínimo especificado (numeral 610.5.2.2.1); el CBR y la expansión se deben medir sobre muestras sometidas previamente a cuatro días (4d) de inmersión.

Tabla 610 - 2. Franjas granulométricas para material de recebo

	Tamiz (mm / U.S Standard)							
	75	38	25,0	4,75	0,075			
Tipo de gradación	3 Pulgadas	1 ½ Pulgadas	1 Pulgada	Nro. 4	Nro. 200			
	Pasa tamiz (%)							
RE-75	100	-	70 – 100	30 - 75	5-30			
RE-38	-	100	70 - 100	30-75	5-30			
Tolerancias en producción sobre la fórmula de trabajo (±)		7 %	6 %	3 %				

610.2.3 Materiales granulares tipo SBG o BG

Estos materiales granulares se denominan tipo SBG, por su similitud con el material de subbase granular para tránsito NT1 (artículo 320) y tipo BG, por su similitud con el material de base granular para tránsito NT1 (artículo 330). Deben cumplir los requisitos de calidad que se indican en la Tabla 610 - 3; igualmente, deben satisfacer alguna de las granulometrías que se indican en la Tabla 610 - 4.

Para prevenir segregaciones y garantizar los niveles de compactación y resistencia exigidos por la presente especificación, el material

que sea producido por el constructor debe dar lugar a una curva que cumpla con las siguien-tes condiciones:

• Para el caso de materiales cuyo porcentaje que pasa a través del tamiz de 0,075 mm

Tabla 610 - 3. Requisitos para materiales granulares tipo SBG o BG

Característica	Norma de	Requisito		
Caracteristica	ensayo INV	Tipo SBG	Tipo BG	
Dureza (O)				
Desgaste en la máquina de los Ángeles (Gradación A), máximo (%) - Quinientas (500) revoluciones	E-218	50	40	
Durabilidad (O)		<u>'</u>	'	
Pérdidas en ensayo de solidez en sulfatos, máximo (%) (Nota) - Sulfato de sodio - Sulfato de magnesio	E-220	12 18	12 18	
Limpieza (F)				
Límite líquido, máximo (%)	E-125	25	25	
Índice de plasticidad, máximo (%)	E-125 y E-126	6	3	
Equivalente de arena, mínimo (%)	E-133	25	30	
Contenido de terrones de arcilla y partículas deleznables, máximo (%)	E-211	2	2	
Geometría de las Partículas (F)				
Índices de alargamiento y aplanamiento, máximo (%)	E-230	-	35	
Caras fracturadas (una cara), mínimo (%)	E-227	-	50	

Nota: se puede validar el requisito de durabilidad, empleando cualquiera de los dos (2) sulfatos indicados.

Tabla 610 - 4. Franjas granulométricas para materiales granulares tipo SBG o BG

		mlz (mm / U.S	mm / U.S. Standard										
Tipo de	50,0	37,5	25,0	19,0	12,5	9,5	4,75	2,00	0,425	0,075			
gradación	2	1 ½	1	3/4	1/2	3/8	Nro. 4	Nro. 10	Nro. 40	Nro. 200			
gradación	Pulgadas	Pulgadas	Pulgada	Pulgada	Pulgada	Pulgada	NIO. 4	NIO. 10	NIO. 40	N10. 200			
		Pasa tamiz (%)											
SGB-50	100	70-95	60 – 90	-	45 — 75	40 – 70	25 - 55	15-40	6 - 25	2 – 15			
SGB-38	-	100	75 – 95	-	55 – 85	45 – 75	30-60	20 - 45	8-30	2-15			
SGB-20	-	-	-	100	60 – 87	50 - 80	35-65	24 - 49	8-30	2 – 15			
BG_38	-	100	70 _ 100	-	60 _ 90	45 ₋₇₅	30-60	20 - 45	10-30	5 - 15			
BG-25	-	-	100	-	70 – 100	50 - 80	35 – 65	20 - 45	10 – 30	5-15			
Tolerancias en													
producción													
sobre la	0 %			7 %			6% 39						
fórmula de													
trabajo (±)													

(nro. 200) en masa sea menor de doce por ciento (12 %), se deben utilizar materiales clasificados según la norma INV E-181 como "bien gradados" (Tablas 181 - 3 y 181 - 4).

• En cualquier caso, que la curva resultante sea sensiblemente paralela a los límites de la franja, sin saltos bruscos de la parte superior de un tamiz a la inferior de un tamiz adyacente y viceversa.

Dentro de la franja elegida, el constructor debe proponer al interventor una fórmula de trabajo" la cual se debe ajustar durante la construcción del relleno, con las tolerancias que se indican en la Tabla 610 - 4, pero sin permitir que la curva se salga de la franja adoptada.

Además, la relación entre el porcentaje que pasa el tamiz de 0,075 mm (nro. 200) y el porcentaje que pasa el tamiz de 0,425 mm (nro. 40) no debe exceder de dos tercios (2/3) y el tamaño máximo nominal no debe exceder de un tercio (1/3) del espesor de la capa compactada.

Tabla 610 - 5. Requisitos de los agregados para material granular filtrante

Característica	Norma de ensayo INV	Requisito
Dureza (O)		
Desgaste en la máquina de los Ángeles (Gradación A), máximo (%)		
 Quinientas (500) revoluciones (%) 	E-218	50
Durabilidad (O)		
Pérdidas en ensayo de solidez en sulfatos, máximo (%) (Nota) - Sulfato de sodio - Sulfato de magnesio	E-220	12 18
Limpieza (F)		
Límite líquido, máximo (%)	E-125	No plástico
Índice de plasticidad, máximo (%)	E-125 y E-126	No plástico
Equivalente de arena, mínimo (%)	E-133	25
Contenido de terrones de arcilla y partículas deleznables, máximo (%)	E-211	2

Nota: se puede validar el requisito de durabilidad, empleando cualquiera de los dos (2) sulfatos indicados.

Tabla 610 - 6. Franjas granulométricas para material granular filtrante

		Tamiz (mm / U.S. Standard)												
	Tipo de	150	100	75	50	25,0	12,5	9,5	4,75	2,00	0,600	0,150	0,075	
	gradación	6	4	3	2	1	1/2	3/8	Nro. 4	Nro. 10	Nro. 30	Nro. 100	Nro. 200	
		Pulgadas	Pulgadas	Pulgadas	Pulgadas	Pulgada	Pulgada	Pulgada	NIO. 4	NIO. 10	1410. 30	NIO. TOO	N10. 200	
		Pasa tamiz (%)												
	MF-150	100	90 - 100	80-100	70 – 95	60 - 80	40-70	-	10-20	0	-	-	-	
	MF-75	-	-	100	-	91 - 97	-	79 - 90	66-80	-	0-40	0-8	0-2	
	MF-50				100	70 – 90	55 – 80	-	35-65	25-50	15-30	0-3	0-2	

610.2.4 Material granular filtrante

El material granular filtrante debe satisfacer los requisitos de calidad que se indican en la Tabla 610 - 5; así mismo, debe cumplir con alguna de las granulometrías que se indican en la Tabla 610 - 6.

610.2.5 Gravilla

La gravilla de rellenos para estructuras debe satisfacer los requisitos de calidad que se indican en la Tabla 610 - 7; además, debe cumplir con la granulometría que se indica en la Tabla 610 - 8.

610.2.6 Arena

La arena de rellenos para estructuras debe satisfacer los requisitos de calidad y gradación que se especifican en la Tabla 610-9 y la Tabla 610-10, respectivamente.

610.3 Equipo

Previo a la ejecución de actividades, el constructor debe presentar al interventor las especificaciones de los equipos, así como la cantidad destinada de estos para las diferentes etapas del proceso constructivo del relleno, las cuales son evaluadas y juzgadas como apropiadas si se considera que pueden

Tabla 610 - 7. Requisitos para gravilla de rellenos para estructuras

Característica	Norma de ensayo INV	Requisito
Dureza (O)		
Desgaste en la máquina de los Ángeles (Gradación A), máximo (%)		
 Quinientas (500) revoluciones (%) 	E-218	50
Durabilidad (O)		
Pérdidas en ensayo de solidez en sulfatos, máximo (%) (Nota) - Sulfato de sodio - Sulfato de magnesio	E-220	12 18
Limpieza (F)		
Contenido de terrones de arcilla y partículas deleznables, máximo (%)	E-211	0,25
Partículas livianas, máximo (%)	E-221	1,0
Geometría de las partículas (F)		
Índice de alargamiento, máximo (%)	E-230	25
Índice de aplanamiento, máximo (%)	E-230	25

Nota: se puede validar el requisito de durabilidad, empleando cualquiera de los dos (2) sulfatos indicados.

Tabla 610 - 8. Franja granulométrica para gravilla de rellenos para estructuras

		Tamiz (mm / U.SStandard)									
Tipo de	37,5	25,0	19,0	12,5	9,5	4,75	2,00				
gradación	1 ½ Pulgadas	1 Pulgada	¾ Pulgada	½ Pulgada	3/8 Pulgada	Nro. 4	Nro. 10				
	Pasa tamiz (%)										
Única	100	70 — 100	54 – 100	20 - 80	0 - 60	0 - 25	0				

Tabla 610 - 9. Requisitos para arena de rellenos para estructuras

Característica	Norma de ensayo INV	Requisito
Durabilidad (O)		
Pérdidas en ensayo de solidez en sulfatos, máximo (%) (Nota)		
 Sulfato de sodio 	E-220	10
Sulfato de magnesio		15
Limpieza (F)		
Límite líquido, máximo (%)	E-125	-
Índice de plasticidad (%)	E-126	No plástico
Equivalente de arena, mínimo (%)	E-133	60
Valor de azul de metileno, máximo (%)	E-235	5
Terrones de arcilla y partículas deleznables, máximo (%)	E-211	1
Partículas livianas, máximo (%)	E-221	0,5
Material que pasa el tamiz de 0,075 mm (nro. 200), máximo (%)	E-214	5
Contenido de materia orgánica (F)		
Color más oscuro permisible	E-212	Igual a muestra patrón

Nota: se puede validar el requisito de durabilidad, empleando cualquiera de los dos (2) sulfatos indicados.

Tabla 610 - 10. Granulometría para arena de rellenos para estructuras

	Tamiz (mm / U.S. Standard)									
	9,5	4,75	2,36	1,18	0,600	0,300	0,150			
Tipo de gradación	3/8 Pulgada	Nro. 4	Nro. 8	Nro. 16	Nro. 30	Nro. 50	Nro. 100			
			Porcentaje	de que pasa	ı (%)					
Única	100	95 – 100	80 — 100	50 – 85	25 – 60	10 – 30	2 – 5			

garantizar el cumplimiento de los parámetros necesarios para el recibo de la actividad (numeral 610.5.2), dentro de los plazos establecidos en el cronograma de obra aprobado.

610.4 Ejecución de los trabajos

610.4.1 Generalidades

El constructor debe notificar al interventor, con suficiente antelación al comienzo de la ejecución de los rellenos, para que este realice los trabajos topográficos necesarios y verifique la calidad del suelo de cimentación, las características de los materiales por emplear y los lugares donde ellos son colocados, sin que ello exima, de manera alguna, la responsabilidad que tiene el constructor para garantizar la calidad de los trabajos.

Por ello, antes de iniciar los trabajos, las obras de concreto o alcantarillas contra las cuales se colocan los rellenos, deben contar con la aprobación del interventor.

Cuando el relleno se vaya a colocar contra una estructura de concreto, solamente se debe permitir su colocación a partir del momento en que se demuestre, mediante ensayo de resistencia a la compresión descrito en la norma INV E-410, que el concreto ha alcanza-do al menos el ochenta y cinco por ciento (85 %) de la

resistencia de diseño. En cualquier caso, el concreto debe lograr el cien por ciento (100 %) de la resistencia a la compresión simple, a la edad de diseño, según los documentos del proyecto, medida según lo establece la misma norma citada.

Los rellenos estructurales para alcantarillas pueden ser iniciados una vez que, desde el momento de la preparación del mortero de la junta, haya transcurrido un periodo no menor al tiempo de fraguado final Vicat del cemento, según procedimiento establecido en la NTC 118 (ASTM C191), incrementado en veinticuatro horas (24 h).

Si en los documentos del proyecto se estable-ce el requisito de resistencia para el mortero de la junta, se puede iniciar el relleno estructural una vez se alcance, al menos, el ochenta y cinco por ciento (85 %) de la resistencia especificada, determinada a partir de los procedimientos descritos en la NTC 220 (ASTM C109).

Siempre que se vaya a asentar o apoyar el relleno sobre un terreno en el que existan corrientes de agua superficiales o subterráneas, previamente y solo si existe autorización de la autoridad ambiental competente, se deben desviar las primeras y captar y conducir las últimas fuera del área donde se vaya a construir el relleno, labores que se efectúan de acuerdo con los artículos 600, Excavaciones varias y 673, Subdrenes con geotextil y mate-rial granular, respectivamente.

Todo relleno colocado antes de que lo autorice el interventor debe ser retirado por el constructor, sin costo adicional para el Instituto Nacional de Vías (INVÍAS).

610.4.2 Preparación de la superficie base de los rellenos

El terreno base del relleno debe estar libre de vegetación, tierra orgánica, materiales de desecho de construcción u otros materiales objetables, y debe ser preparado de acuerdo con lo señalado en el numeral 220.4.2 del artículo 220.

610.4.3 Extensión y compactación del material

Los materiales de relleno se deben extender en capas preferiblemente horizontales y de espesor uniforme, las cuales deben ser lo suficientemente delgadas para que, con los medios disponibles, se obtenga el grado de compactación exigido, verificado en la totalidad del espesor de cada capa.

Cuando el relleno se deba depositar sobre agua, las exigencias de compactación para las capas solamente se aplican una vez se haya obtenido un espesor de un metro (1 m) de material relativamente seco.

Los rellenos alrededor de pilas y alcantarillas se deben depositar simultáneamente a ambos lados de la estructura y aproximadamente a la misma elevación. Los rellenos al respaldo de estribos, muros y otras estructuras, se deben realizar de manera que no se pongan en peligro la integridad y la estabilidad de dichas obras, empleando procedimientos propuestos por el constructor y aprobados por el interventor.

Cuando no se contemple la colocación de material filtrante al respaldo de la estructura, se debe colocar grava o roca triturada en las cercanías de los orificios de drenaje, para evitar presiones excesivas y segregación del material de relleno.

Durante la ejecución de los trabajos, la superficie de las diferentes capas debe contar con una pendiente que garantice la evacuación de las aguas superficiales sin peligro de erosión.

Una vez extendida la capa, se debe proceder a su humedecimiento, si es necesario. El contenido óptimo de humedad se debe determinar en la obra, a la vista de la maquinaria disponible y de los resultados que se obtengan en los ensayos realizados.

En los casos especiales en que la humedad del material sea excesiva para conseguir la compactación prevista, el constructor debe tomar las medidas adecuadas, pudiendo proceder a la desecación por aireación o a la adición y mezcla de materiales secos u otras sustancias apropiadas, aceptadas por el interventor.

Obtenida la humedad apropiada, determinada mediante cualquiera de los procedimientos establecidos en las Normas de Ensayo de Materiales para Carreteras de INVÍAS, se debe proceder a la compactación mecánica de la capa. En áreas inaccesibles a los equipos mecánicos, se autoriza el empleo de compactadores manuales que permitan obtener los mismos niveles de densidad del resto de la capa. La compactación se debe continuar hasta lograr los niveles de densidad a que se hace mención en el numeral 610.5.2.2.1.

La construcción de los rellenos debe hacerse con el cuidado necesario para evitar presiones y daños a las estructuras contra las cuales se colocan.

610.4.4 Capas filtrantes

Cuando se contemple la colocación de capas filtrantes detrás de estribos, muros y obras de arte, ellas se deben disponer y compactar antes o simultáneamente con los demás materiales de relleno, tomando la precaución de que estos no se contaminen entre sí.

610.4.5 Acabado

Al concluir cada jornada de trabajo, la superficie de la última capa debe estar compactada y bien nivelada, con declive suficiente que permita el escurrimiento de aguas lluvias, sin peligro de erosión.

610.4.6 Limitaciones en la ejecución

No se debe permitir adelantar los trabajos objeto del presente artículo, cuando la temperatura ambiente a la sombra y la de la superficie sean inferiores a dos grados Celsius (2 °C) o haya lluvia o fundado temor de que ella ocurra.

Los trabajos de construcción se deben realizar en condiciones de luz solar. Sin embargo, cuando se requiera terminar el proyecto en un tiempo especificado por INVÍAS o se deban evitar horas pico de tránsito público, el interventor puede autorizar el trabajo en horas de oscuridad, siempre y cuando el constructor garantice el suministro y la operación de un equipo de iluminación artificial que sea aprobado por este. Si el constructor no ofrece esta garantía, no se le debe permitir el trabajo nocturno y debe poner a disposición de la obra el equipo y el personal adicionales para completar el trabajo en el tiempo especificado, operando únicamente durante las horas de luz solar.

610.4.7 Manejo ambiental

Adicional a los aspectos generales indicados en el artículo 106, Aspectos ambientales, todas las labores requeridas para la construcción de rellenos para estructuras se deben realizar teniendo en cuenta lo establecido en los estudios y evaluaciones ambientales del proyecto, así como en las normas y disposiciones vigentes sobre conservación del ambiente, los recursos naturales y protección de la comunidad.

Todas las actividades que se ejecuten en cumplimiento a esta especificación, deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas actividades deben estar incluidas en los costos del proyecto, por lo tanto, no son objeto de reconocimiento directo en el contrato.

610.5 Condiciones para el recibo de los trabajos

610.5.1 Controles

El plan de calidad y el plan de inspección, medición y ensayo son de obligatorio cumplimiento, tal como se encuentra expresado en el numeral 103.2 del artículo 103, Responsabilidades especiales del constructor.

Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales:

- Comprobar el estado y el funcionamiento del equipo de construcción.
- Verificar el cumplimiento de las disposiciones existentes en el artículo 102, Aspectos generales de seguridad y salud.
- Supervisar la correcta aplicación de los métodos de trabajo aceptados.
- Confirmar el cumplimiento de las normas ambientales aplicables.
- Corroborar que los materiales cumplan los requisitos de calidad mencionados en el numeral 610.2.

- Verificar el alineamiento, el perfil y las secciones de las áreas en las que se construyan los rellenos.
- Determinar la densidad de cada capa compactada. Este control se realiza en todo el espesor de cada capa realmente construida, de acuerdo con el proceso constructivo aprobado.
- Controlar que la ejecución del relleno contra cualquier parte de una estructura de concreto, solamente se comience cuando aquella adquiera la resistencia especificada según lo establecido en el numeral 610.4.1.
- Medir, para efectos de pago, los volúmenes de relleno y material filtrante coloca-dos conforme con la presente especificación.

610.5.2 Condiciones específicas para el recibo y tolerancias

610.5.2.1 Calidad de los materiales

De cada procedencia de los materiales empleados para la construcción de rellenos y para cualquier volumen previsto, se deben tomar como mínimo dos (2) muestras y, de cada fracción de ellas, se deben determinar los parámetros indicados en el numeral 610.2 y sus respectivos subnumerales 610.2.1, 610.2.2, 610.2.3, 610.2.4, 610.2.5 y 610.2.6, según el tipo de material de relleno. La totalidad de los resultados debe satisfacer las exigencias indicadas en ellos. El incumplimiento de una o varias de las exigencias planteadas en los subnumerales anteriores conlleva al rechazo de los materiales deficientes.

Durante la etapa de producción, el interventor debe examinar las descargas de los materia-les, ordenando el retiro de aquellos que, a simple vista, presenten restos de tierra vegetal, materia orgánica o tamaños superiores al máximo especificado.

Teniendo en cuenta que los volúmenes de rellenos para estructuras suelen ser inferiores a los requeridos para terraplenes, es el interventor quien establece la frecuencia de ejecución de las diversas pruebas de calidad, basado en los criterios definidos por cada norma específica relacionada con la definición del tamaño de un lote o la frecuencia de realización de ensayos.

610.5.2.2 Calidad del producto terminado

Los taludes terminados no deben exhibir irregularidades a la vista.

La cota de cualquier punto de la subrasante, en rellenos para estructuras, no debe variar más de treinta milímetros (30 mm) de la proyectada, medida verticalmente hacia abajo y, en ningún caso, la cota de subrasante puede superar la cota del proyecto.

En las obras concluidas, no se debe admitir ninguna irregularidad que impida el normal escurrimiento de las aguas superficiales.

En adición a lo anterior, se deben adelantar las siguientes comprobaciones:

610.5.2.2.1 Compactación

Para efectos de la verificación de la compactación de cada una de las capas de relleno para estructuras en suelo, recebo y materiales granulares tipo SBG o BG, se calcula el grado de compactación individual para cada sitio de ensayo de densidad en el terreno, de acuerdo con lo indicado en el numeral 220.5.2.2 del artículo 220, fórmulas [220.1] o [220.2] según aplique.

Para suelos que clasifican como A-1, A-2-4 o A-3, recebos y suelos granulares tipo SBG o BG, el valor del peso unitario seco máximo se obtiene según la norma de ensayo INV E-142 y la capa de relleno se acepta si el grado de compactación individual , calculado para todos los ensayos de densidad en el terreno efectuados en la capa, cumple el siguiente criterio:

$$GCi \geq 90,0\%$$
 [610.1]

Para suelos que no clasifican como A-1, A-2-4 o A-3, el valor del peso unitario seco máximo se obtiene según la norma de ensayo INV E-141 y la capa de relleno se acepta si el grado de compactación individual , calculado para todos los ensayos de densidad en el terreno efectuados en la capa, cumple el siguiente criterio:

$$GCi \geq 95,0\%$$
 [610.2]

El número de pruebas por ejecutar en cada capa para realizar el control, debe ser definido por el interventor, pero nunca podrán ser inferiores a las exigidas por las normas de ensayo respectivas.

Las capas de relleno que no alcancen las condiciones mínimas de compactación deben ser escarificadas, homogenizadas, llevadas a la humedad adecuada y compactadas nueva-mente, hasta obtener el valor de la densidad seca especificada.

La compactación de las capas de material filtrante, gravilla y arena, se considera satisfactoria cuando no haya evidencia visible de consolidación adicional al paso del equipo de compactación aprobado por el interventor.

610.5.2.2.2 Protección de la superficie del relleno

Al respecto, se aplica el mismo criterio indica-do en el numeral 220.5.2.2.4 del artículo 220, en relación con la protección de la corona de terraplenes.

Todas las irregularidades que excedan las tolerancias mencionadas deben ser corregidas por el constructor, sin costo adicional para INVÍAS, hasta conseguir la aprobación por parte del interventor.

610.6 Medida

La unidad de medida para los volúmenes de rellenos debe ser el metro cúbico (m3), aproximado a la décima (0,1), de material compacta-do, aceptado por el interventor, en su posición final. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

Los volúmenes deben ser determinados con base en las áreas de las secciones transversa-les del proyecto localizado, verificadas por el interventor antes y después de ser ejecutados los trabajos de relleno. Dichas áreas están limitadas por las líneas de pago teóricas mostradas en los documentos del proyecto o autorizadas por el interventor. En los casos en que el volumen a compactar corresponda a una figura geométrica regular, se puede realizar su medición mediante fórmulas geométricas, siempre y cuando esto no conlleve a medir volúmenes por fuera de las líneas del proyecto.

No hay medida ni pago para los rellenos por fuera de las líneas o hilos del proyecto, efectuados por el constructor, ya sea por negligen-cia o por conveniencia para la operación de sus equipos.

Tampoco se deben medir los rellenos que haga el constructor en sus caminos de construcción y obras auxiliares que no formen parte del proyecto.

610.7 Forma de pago

El trabajo de rellenos para estructuras se debe pagar al precio unitario del contrato, por toda obra ejecutada de acuerdo con los documentos del proyecto, la presente especificación y según lo que sea aprobado por el interventor.

El precio unitario debe cubrir todos los costos por concepto de construcción o adecuación de las vías de acceso a las fuentes de materia-les, la extracción, preparación y suministro de los materiales, así como su cargue, transportes, descargue, almacenamiento, colocación, humedecimiento o secamiento, compactación y, en general, todo costo relacionado con la correcta construcción de los rellenos para estructuras de acuerdo con los documentos del proyecto, esta especificación y la aprobación del interventor.

No se debe pagar el suministro de materiales de relleno para estructuras que hayan sido obtenidos de las excavaciones de la explanación, canales y préstamos, ni de las

excavaciones varias del contrato, según los artículos 210, Excavación de la explanación, canales y préstamos, y 600 de estas especificaciones.

El precio unitario debe cubrir, además, los costos de adecuación de las fuentes de materiales al término de los trabajos para recuperar sus características hidrológicas superficiales, así como los de señalización preventiva de la vía y ordenamiento del tránsito automotor durante el período de ejecución de los trabajos.

El precio unitario debe cubrir, también, los costos de administración, imprevistos y la utilidad del constructor.

Por su parte, los costos por concepto de preparación de las superficies sobre las cuales se construyen los rellenos y capas filtrantes se deben reconocer de acuerdo con el artículo 220 o el artículo 600, el que resulte aplicable según las características de la obra que se construye. Si ninguno de estos artículos forma parte del contrato, los costos de la prepara-ción de la superficie existente deben quedar incluidos dentro del precio unitario de los rellenos objeto del presente artículo.

610.8 Ítem de pago

Ítem	Descripción	Unidad
610.1	Rellenos para estructuras con suelo	Metro cúbico (m³)
610.2	Rellenos para estructuras con recebo	Metro cúbico (m³)
610.3	Rellenos para estructuras con material granular tipo SBG-50	Metro cúbico (m³)
610.4	Rellenos para estructuras con material granular tipo SBG-38	Metro cúbico (m³)
610.5	Rellenos para estructuras con material granular tipo SBG-20	Metro cúbico (m³)
610.6	Rellenos para estructuras con material granular tipo BG-38	Metro cúbico (m³)
610.7	Rellenos para estructuras con material granular tipo BG-25	Metro cúbico (m³)
610.8	Rellenos con material filtrante	Metro cúbico (m³)
610.9	Relleno con gravilla	Metro cúbico (m³)
610.10	Relleno con arena	Metro cúbico (m³)

4.4. ACERO DE REFUERZO 60000 PSI

640.1 DESCRIPCIÓN

Este trabajo consiste en el suministro, transporte, almacenamiento, corte, doblamiento y colocación de barras de acero en estructuras de concreto, en concordancia con los documentos del proyecto y esta especificación.

640.2MATERIALES

640.2.1 Barras de refuerzo

Deben cumplir las que sean pertinentes de las siguientes normas, según se establezca en los documentos del proyecto: NTC 161, ASTM A615 (Grado 420), NTC 2289 (ASTM A706), NTC 4013 (ASTM A767), ASTM A996, ASTM A955, ASTM A1035 y ASTM A184.

Las barras de refuerzo galvanizadas deben cumplir con la NTC 4013 (ASTM A767); las barras con recubrimiento epóxico con el numeral 9.2.2. de la norma AASHTO LRFD Bridge Construction Specifications y con la NTC 4004 (ASTM A775) o la norma ASTM A934; las barras que se vayan a galvanizar deben cumplir con la NTC 2289 (ASTM A706).

En caso de usar barras de acero reciclado, proveniente de rieles o ejes, este debe ser tipo R, acorde con la norma ASTM A996 (Grado 420).

Las barras de acero inoxidable deben ser corrugadas y cumplir con la norma ASTM A955.

El acero utilizado en el refuerzo para concreto compuesto por fibras dispersas de acero, debe ser corrugado y cumplir con la NTC 5214 (ASTM A820). Las fibras de acero, a su vez, deben tener una relación longitud-diámetro no menor a cincuenta (50) y no mayor a cien (100).

El refuerzo liso solo se debe permitir como refuerzo de espirales no preesforzado, siempre y cuando así esté contemplado en los documentos del proyecto. Este refuerzo solo se debe permitir en los casos admitidos por el ACI 318, Requisitos de reglamento para concreto estructural.

640.2.2 Mallas electrosoldadas

Los alambres para mallas y las mallas en sí, deben cumplir con las normas NTC 5806 (ASTM A1064) y ASTM A1022.

Las mallas con recubrimiento epóxico, con la norma ASTM A884.

Las mallas galvanizadas deben cumplir con la norma ASTM A1060.

En mallas de alambre liso, las intersecciones soldadas no deben estar espaciadas a más de trescientos milímetros (300 mm), ni a más de cuatrocientos milímetros (400 mm) en mallas de alambre corrugado, excepto cuando las mallas se utilizan como estribos.

Se debe permitir el uso de alambre corrugado de los tamaños MD25 a MD200.

Se puede sustituir el refuerzo de alambre soldado con barras de refuerzo en los siguientes casos: recubrimiento de taludes y zanjas revestidas, muros de contención, barreras de hormigón, aceras, bordillos y cunetas en estructuras, adiciones estéticas no estructura-les, muros de cabecera de alcantarillas, muros de extremo y muros de alas o aletas, concreto lanzado, sobrecapas de cubiertas. Si el refuerzo de alambre soldado no proporciona el área de acero requerida, se puede completar con barras de refuerzo

Masas teóricas de las barras de refuerzo

Para efectos de la comprobación de la designación y del pago de las barras, se deben considerar las masas unitarias que se indican en las Tablas 640 - 1 y 640 - 2.

Daws	Diámetro nominal		Masa
Barra	(mm)	(pulgadas)	(kg/m)
Nro. 2	6,4	1/4	0,250
Nro. 3	9,5	3/8	0,560
Nro. 4	12,7	1/2	0,994
Nro. 5	15,9	5/8	1,552
Nro. 6	19,1	3/4	2,235
Nro. 7	22,2	7/8	3,042
Nro. 8	25,4	1	3,973
Nro. 9	28,7	1 1/8	5,060
Nro. 10	32,3	1 1/4	6,404
Nro. 11	35,8	1 3/8	7,907
Nro. 14	43,0	1 3/4	11,380
Nro. 18	57,3	2 1/4	20,240

Tabla 640 - 2. Masa de las barras por unidad de longitud (Diámetros basados en milímetros)

Barra	Diámetro nominal	Masa
	(mm)	(kg/m)
6M	6,0	0,22
8M	8,0	0,39
10M	10,0	0,62
12M	12,0	0,89
16M	16,0	1,58
18M	18,0	2,00
20M	20,0	2,47
22M	22,0	2,98
25M	25,0	3,85
32M	32,0	6,31
45M	45,0	12,48
55M	55,0	18,64

Los números de designación son iguales al número de octavos de pulgada del diámetro nominal de referencia. La letra M indica que son diámetros nominales en milímetros (mm).

640.3 Equipo

Se requiere de equipo adecuado para el corte y el doblado de las barras de refuerzo.

Si se autoriza el empleo de soldadura, el constructor debe disponer del equipo apropia-do para dicha labor y de personal capacitado para la misma, el cual debe contar con el respectivo certificado de calificación de sol-dador vigente y válido para el tipo de procedimiento que debe efectuar en concordancia con la AWS. Se debe requerir, además, la certificación del fabricante del acero que indique que el producto es apto para ser soldado.

Se deben requerir, además, elementos que permitan asegurar correctamente el refuerzo en su posición, así como herramientas meno-res.

640.4 Ejecución de los trabajos

Se deben tener en cuenta las exigencias del ACI 318 y de la Norma Colombiana de Diseño de Puentes, en sus versiones vigentes, en todos los aspectos que resulten aplicables.

640.4.1 Planos y despiece

Antes de cortar el material según las formas indicadas en los documentos del proyecto, el constructor debe verificar además de las dimensiones y longitudes de los elementos en obra, las listas de despiece y los diagramas de doblado. Si los documentos del proyecto no los muestran, las listas y los diagramas deben ser

preparados por el constructor para someterlos a la aprobación del interventor, pero tal aprobación no exime a aquel de su responsabilidad por la exactitud de los mismos. En este caso, el constructor debe contemplar el costo de la elaboración de las listas y los diagramas mencionados, dentro de los precios de su oferta.

Si el constructor desea replantear una junta de construcción en cualquier parte de una estructura para la cual el interventor le haya suministrado planos de refuerzo y listas de despiece, y dicho replanteo es aprobado por el interventor, el constructor debe revisar, sin costo adicional para el Instituto Nacional de Vías (INVÍAS), los planos y las listas de despiece que correspondan a la junta propuesta, y someter las modificaciones respectivas para aprobación del interventor, al menos treinta días (30 d) antes de la fecha prevista para el corte y el doblamiento del refuerzo para dicha parte de la obra. Si, por cualquier razón, el constructor no cumple con este replanteo, la junta y el refuerzo correspondientes deben ser dejados sin modificación alguna, según se muestre en los documentos del proyecto.

640.4.2 Suministro y almacenamiento

Todo envío de acero de refuerzo que llegue al sitio de la obra o al lugar donde vaya a ser doblado, debe estar identificado con etiquetas en las cuales se indiquen la fábrica, el grado del acero y el lote o colada correspondiente.

El acero debe almacenarse en forma ordenada por encima del nivel del terreno, sobre plata-formas, largueros u otros soportes de material adecuado y debe ser protegido contra daños mecánicos y deterioro superficial, incluyendo los efectos de la intemperie, manteniéndolo en un ambiente seco, ventilado y fuera de ambientes corrosivos.

640.4.3 Doblamiento

Las barras de refuerzo deben doblarse en frío, de acuerdo con las listas de despiece aprobadas por el interventor. Los diámetros mínimos de doblamiento, medidos en el interior de la barra, con excepción de flejes y estribos, no deben ser menores que los indicados en la Tabla 640 – 3.

El diámetro mínimo de doblamiento para estribos no debe ser menor que los indicados en la Tabla 640 – 4.

El doblamiento de las barras se debe realizar en frío y a una velocidad moderada y debe evitarse el doblado a temperaturas inferiores a cinco grados Celsius (5 °C).

Barras o mallas galvanizadas deben repararse en sus extremos acorde con la NTC 6092 (ASTM A780), cuando sean cortadas o cuando su recubrimiento de

galvanización sea removido o dañado. No se deben admitir barras con más del dos por ciento (2 %) de área superficial dañada.

640.4.4 Colocación y amarre

Todo acero de refuerzo al ser colocado en la obra y antes de la fundición del concreto, debe estar libre de polvo, escamas de óxido, rebabas, pintura, aceite, grasa o cualquier otro tipo de suciedad que pueda afectar la adherencia del acero en el concreto. Todo mortero seco debe ser quitado del acero.

Las barras se deben colocar con exactitud, de acuerdo con las indicaciones de los documentos del proyecto, y se deben asegurar firmemente en las posiciones señaladas, de manera que no sufran desplazamientos durante la

Tabla 640 - 3. Geometría del gancho estándar para el desarrollo de barras corrugadas a tracción

Tipo de gancho estándar	Diámetro de la barra	Diámetro interior mínimo de doblado (mm)	Extensión recta [1], ℓ_{ext} (mm)	Tipo de gancho estándar
Gancho de noventa grados (90°)	Nro. 10 a nro. 25	6_{db}	12 _{db}	Punto en el cual se desarrolla la barra Objeta de Sp grados Diárnetro Lati
	Nro. 29 a nro. 36	8_{db}		
	Nro. 43 y nro. 57	10_{db}		
Gancho de ciento ochenta grados (180°)	Nro. 10 a nro. 25	6_{db}	Mayor de 4 _{db} y 65 mm	Punto en el cual se desarrolla la barra d _b Doblez de 180 grados
	Nro. 29 a nro. 36	8_{db}		
	Nro. 43 y nro. 57	10_{db}		

Tabla 640 – 4. Diámetro mínimo interior de doblado y geometria del gancho estándar para estribos y estribos cerrados de confinamiento

Tipo de gancho estándar	Diámetro de la barra	Diámetro interior mínimo de doblado (mm)	Extensión recta [1], ℓ_{ext} (mm)	Tipo de gancho estándar
Gancho de noventa grados	Nro. 10 a nro. 16	4_{db}	Mayor de 6 _{db} y 75 mm	Doblez de 80 grados
(90°)	Nro. 19 a nro. 25	6_{db}	12 _{db}	Diámetro Lexit
Gancho de ciento	Nro. 10 a nro. 16	4_{db}	– Mayor de 6 _{db} y 75 mm	Doblez de 135 grades Diámetro
treinta y cinco grados (135°)	Nro. 19 a nro. 25	6_{db}		
Gancho de ciento	Nro. 10 a nro. 16	4_{db}	Mayor de 4 _{db} y	Doblez de
ochenta grados (180°)	Nro. 19 a nro. 25	6 _{db}	65 mm	Diámetro 180 grados

colocación y el fraguado del concreto. Las tolerancias en la posición de todo tipo de refuerzo deben cumplir con las especificaciones establecidas en ACI 117, Especificación para la tolerancia de estructuras de concreto y materiales. La posición del refuerzo dentro de las formaletas debe ser mantenida por medio de tirantes, bloques, silletas de metal, espaciadores o cualquier otro soporte aprobado por el interventor. Los bloques deben ser de mortero de cemento prefabricado o de concreto, de calidad, forma y dimensiones aprobadas, con una resistencia igual a la especificada para el elemento de concreto. Las silletas de metal que entren en contacto con la superficie exterior del concreto, deben ser galvaniza-das. No se debe permitir el uso de guijarros, fragmentos de piedra o de ladrillo, tubería de metal o bloques de madera.

Las barras deben amarrarse con alambre en todas las intersecciones, excepto en el caso de espaciamientos menores de trescientos milímetros (300 mm), para lo cual se deben amarrar alternadamente. El alambre usado para el amarre debe ser del tipo negro calibre número dieciocho (nro. 18). No se debe admitir la soldadura en las intersecciones de las barras de refuerzo.

Si el refuerzo de malla se suministra en rollos para ser usados en superficies planas, la malla debe ser enderezada en láminas planas, antes de su ubicación.

Cuando se coloquen dos (2) o más filas de barras, las barras de las filas superiores deben colocarse directamente encima de las de la fila inferior y la separación libre entre filas no debe ser menor de veinticinco milímetros (25 mm).

La distancia libre mínima entre barras parale-las de una capa, debe ser la mayor entre veinticinco milímetros (25 mm), o el diámetro de la barra mayor, o uno coma treinta y tres (1,33) veces el tamaño máximo nominal del agregado grueso.

Estos requisitos se deben cumplir, también, en la separación libre entre un empalme por traslapo y otros empalmes u otras barras.

Además, se deben cumplir con los recubrimientos mínimos especificados en el ACI 318 y de la Norma Colombiana de Diseño de Puentes, cumpliendo con las tolerancias máximas exigidas en ACI 117 o del ACI 318.

El interventor debe revisar y aprobar el refuerzo de todas las partes de las estructuras, antes de que el constructor inicie la colocación del concreto.

640.4.5 Traslapos y uniones

Los traslapos de las barras de refuerzo deben cumplir los requisitos establecidos en el ACI 318 y en la Norma Colombiana de Diseño de Puentes y se deben efectuar en los sitios mostrados en los documentos del proyecto o donde lo indique el interventor, debiendo ser localizados de acuerdo con las juntas del concreto.

El constructor puede introducir traslapos y uniones adicionales, en sitios diferentes a los mostrados en los documentos del proyecto, siempre y cuando dichas modificaciones sean aprobadas por el diseñador estructural y el interventor, que los traslapos y uniones en barras adyacentes queden alternados según

su exigencia, y que el costo del refuerzo adicional requerido sea asumido totalmente por el constructor.

En los traslapos, las barras deben quedar colocadas en contacto entre sí, amarrándose con alambre, de manera que mantengan la alineación y su espaciamiento dentro de las distancias libres mínimas especificadas en relación con las demás varillas y las superficies del concreto.

El constructor puede reemplazar las uniones traslapadas por uniones soldadas empleando soldadura que cumpla las normas de la American Welding Society (AWS) D1.4. En tal caso, los soldadores deben estar certificados y calificados para el tipo de unión especificada, los procedimientos deben precalificarse por el interventor de acuerdo con los requisitos de la AWS y las juntas soldadas deben ser revisadas radiográficamente o por otro método no destructivo que esté contemplado por la práctica. El costo de este reemplazo y el de las pruebas de revisión del trabajo así ejecutado, debe correr por cuenta del constructor.

Las láminas de malla o parrillas de varillas se deben traslapar suficientemente entre sí, para mantener una resistencia uniforme y deben asegurarse en los extremos y bordes. El traslapo de mallas debe ser mínimo uno coma tres (1,3) la longitud de desarrollo requerida y debe cumplir con ACI 318.

640.4.6 Cuantías del refuerzo

Se deben cumplir en toda sección de un elemento estructural, las disposiciones de cuantías máximas y mínimas establecidas en el ACI 318 y en la Norma Colombiana de Diseño de Puentes.

640.4.7 Sustituciones

La sustitución de cuantías de refuerzo solo se puede efectuar con autorización del diseñador estructural. En tal caso, el acero sustituido debe tener un área y perímetro equivalentes o mayores que el área y perímetro de diseño, sin exceder los límites establecidos en el numeral 640.4.6.

640.4.8 Manejo ambiental

En adición a los aspectos generales indicados en el artículo 106, Aspectos ambientales, todas las labores requeridas para el suministro, almacenamiento, transporte e instalación de acero estructural, se deben realizar teniendo en cuenta lo establecido en los estudios y evaluaciones ambientales del proyecto, así como en las normas y disposiciones vigentes sobre conservación del ambiente, los recursos naturales y protección de la comunidad.

Todas las actividades que se ejecuten en cumplimiento a esta especificación, deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas actividades deben incluirse en los costos del proyecto, por tanto, no son objeto de reconocimiento directo en el contrato.

640.5 Condiciones para el recibo de los trabajos

640.5.1 Controles

El plan de calidad y el plan de inspección, medición y ensayo, son de obligatorio cumplimiento tal como se encuentra expresado en el numeral 103.2 del artículo 103, Responsabilidades especiales del constructor.

Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales

Verificar el estado y funcionamiento del equipo de construcción.

- Constatar el cumplimiento de las disposiciones existentes en el artículo 102, Aspectos generales de seguridad y salud.
- Comprobar que los materiales por utilizar cumplan con los requisitos de calidad exigidos por la presente especificación; para tal efecto, se deben realizar los ensayos especificados en ACI 318 y la Norma Colombiana de Diseño de Puentes y constatar que se cumpla con los ensayos especificados en 640.5.2.1
- Verificar que el corte, doblado, colocación y cuantía del refuerzo se efectúen de acuerdo con los documentos del proyecto, con esta especificación y con sus instrucciones.
- Comprobar que cuando se sustituya el refuerzo indicado en los documentos del proyecto, se cuente con el aval del diseñador estructural responsable.
- Efectuar las medidas correspondientes para el pago del acero de refuerzo correctamente suministrado y colocado.

640.5.2 Condiciones específicas para el recibo y tolerancias

640.5.2.1 Calidad del acero

Las barras y mallas de refuerzo deben ser ensayadas en fábrica y sus resultados deben satisfacer los requerimientos de las normas correspondientes NTC, ASTM o AASHTO relacionadas en el numeral 640.2.

El constructor debe suministrar al interventor una certificación de los resultados de los análisis químicos y pruebas físicas realizadas por el fabricante para el lote correspondiente en cada envío de refuerzo a la obra. En caso de que el constructor no cumpla con este requisito, el interventor puede ordenar, a expensas de aquel, la ejecución de todos los ensayos que considere necesarios sobre el refuerzo, antes de aceptar su utilización, acorde con los volúmenes y frecuencias establecidas en el ACI 318 y en la Norma Colombiana de Diseño de Puentes.

Deben tomarse muestras de los aceros de refuerzo utilizados en la obra, de todos los diámetros de barra utilizados, por lo menos una vez por cada doscientas toneladas (200 t) de acero de refuerzo utilizado, cuando se trate de aceros de fabricación nacional, y cada cien toneladas (100 t) de acero de refuerzo empleado, cuando se trate de aceros importados, para ser ensayados a tensión. Los ensayos se deben realizar de acuerdo con lo especificado en la NTC 3353 (ASTM A370), NTC, ASTM o AASHTO referenciadas en 640.2, correspondiente a cada tipo de acero.

Cuando se autorice el empleo de soldadura para las uniones, su calidad y la del trabajo ejecutado, se deben verificar de acuerdo con lo indicado en el numeral 640.4.5.

Las varillas que tengan fisuras o hendiduras en los puntos de flexión, deben ser rechazadas.

640.5.2.2 Calidad del producto terminado

La tolerancia en la colocación del acero de refuerzo debe cumplir las máximas permitidas por el ACI 117.

Se deben aceptar las siguientes tolerancias en la colocación del acero de refuerzo:

640.5.2.2.1 Desviación en el espesor de recubrimiento

- Con recubrimiento menor o igual a setenta y cinco milímetros (≤75 mm): cinco milímetros (5 mm).
- Con recubrimiento superior a setenta y cinco milímetros (> 75 mm): diez milímetros (10 mm).

640.5.2.2.2 Desviación en los espaciamientos prescritos

Se debe cumplir lo indicado en el numeral 640.4.4.

640.5.2.2.3 Área

No se debe permitir la colocación de acero con áreas y perímetros inferiores a los de diseño.

Todo defecto de calidad o de instalación que exceda las tolerancias de esta especificación, debe ser corregido por el constructor, sin costo alguno para INVÍAS, de acuerdo con procedimientos aceptados por el interventor.

640.6 Medida

La unidad de medida debe ser el kilogramo (kg), aproximado al entero, de acero de refuerzo para estructuras de concreto realmente suministrado y colocado en obra y debida-mente aceptado por el interventor. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

La medida no debe incluir el peso de soportes, separadores, silletas de alambre o elementos similares utilizados para mantener el refuerzo en su sitio; ni los empalmes adicionales a los indicados en los documentos del proyecto, que hayan sido autorizados por el interventor, para conveniencia del constructor.

Tampoco se debe medir el acero específicamente estipulado, para pago en otras unida-des de obra del contrato.

Si se sustituyen barras a solicitud del constructor y como resultado de ello se usa más acero del que se ha especificado, no se debe medir la cantidad adicional.

La medida para barras se debe basar en la masa computada para los tamaños y longitudes de barras utilizadas, usando las masas unitarias indicadas en las Tablas 640 - 1 y 640 - 2.

La medida para malla de alambre debe ser el producto del área en metros cuadrados de malla efectivamente incorporada y aceptada en la obra por su masa real en kilogramos por metro cuadrado (kg/m2), aproximado al kilogramo entero. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

No se deben medir cantidades en exceso de las indicadas en los documentos del proyecto o las ordenadas por el interventor.

640.7 Forma de pago

El pago se debe realizar al precio unitario del contrato por toda obra ejecutada, de acuerdo con esta especificación y aceptada por el interventor.

El precio unitario debe cubrir todos los costos por concepto de suministro, ensayos, transportes, almacenamiento, corte, desperdicios, doblamiento, limpieza, colocación y fijación del refuerzo y por la mano de obra, materiales, patentes, equipos e imprevistos necesarios para terminar correctamente el trabajo, de acuerdo con los documentos del proyecto, con esta especificación y lo aprobado por el interventor.

El precio unitario debe incluir también, todos los costos por concepto de elaboración de listas de despiece y diagramas de doblado cuando ellos no hayan sido suministrados, por el suministro e instalación de abrazaderas, separadores, silletas de alambre o cualquier otro elemento utilizado para sostener y mantener el refuerzo en su sitio, así como los de la señalización preventiva de la vía y el ordenamiento del tránsito automotor durante la ejecución de los trabajos y todo costo relacionado con la correcta ejecución de los trabajos especificados.

El precio unitario debe incluir también, la administración e imprevistos y la utilidad del constructor.

No debe haber lugar a pago separado por el acero de refuerzo para concreto colocado con el propósito de reemplazar estructuras de concreto que se deterioren o queden defectuosas o en el concreto que el constructor haya utilizado para su conveniencia con o sin autorización del interventor. Tampoco se debe pagar por separado el acero cuyo pago se haya estipulado en otras unidades de obra del

contrato, ni por los trabajos de soldadura que se autoricen para uniones soldadas en reemplazo de uniones traslapadas.

640.8 item de pago

Ítem	Descripción	Unidad
640.1	Acero de refuerzo fy = MPa	Kilogramo (kg)
640.2	Malla de refuerzo fy = MPa	Kilogramo (kg)

Nota: se debe elaborar un ítem de pago para resistencia de acero que se especifique en el proyecto.

640.1 Acero de refuerzo fy=414 MPa (kg)

4.5. TUBERIA DE CONCRETO REFORZADO 21MPA DE 900MM

661.1 Descripción

Este trabajo consiste en el suministro, el transporte, el almacenamiento, el manejo y la colocación de tubería de concreto reforzado, con los diámetros, las armaduras, los alineamientos, las cotas y las pendientes mostrados en los documentos del proyecto; comprende, además, el suministro de los materiales para las juntas de los tubos y la construcción de estas, así como las conexiones a cabezales u obras existentes o nuevas, y la remoción y disposición de los materiales sobrantes.

661.2 Materiales

661.2.1 Tubería

La tubería que suministre el constructor debe cumplir los requisitos de la NTC 401. La clase de tubería y su diámetro interno se deben indicar en los documentos del proyecto, de acuerdo con los diámetros máximos citados en la mencionada norma. Los extremos de los tubos y el diseño de las juntas deben ser tales, que se garantice un encaje adecuado entre secciones continuas, de manera que brinden un conducto permanente y libre de irregularidades en la línea de flujo.

Los requisitos de resistencia al agrietamiento y rotura que deben cumplir los tubos son los especificados en la NTC 401. Los requisitos de durabilidad correspondientes al artículo 630, Concreto estructural, deben ser aplicados a las tuberías de concreto

reforzado. La prueba de abrasión, de obligatorio cumplimiento, se debe realizar de acuerdo con el procedimiento especificado en la norma técnica EAAB NP-027.

661.2.2 Material para solado, atraque y relleno de zanja

Los materiales para el solado, atraque y relleno de la zanja deben ser los indicados en los documentos del proyecto. Los suelos, los materiales de recebo, los materiales granulares tipo SBG y BG, gravilla y arena que se utilicen deben cumplir, respectivamente, lo indicado en los numerales 610.2.1, 610.2.2, 610.2.3, 610.2.5 y 610.2.6 del artículo 610, Rellenos para estructuras. El tamaño máximo del material para solado y atraque de los tubos no debe ser mayor que veinticinco milímetros (25 mm) (1 pulgada) y el material para rellenos alrededor del tubo no debe exceder los setenta y cinco milímetros (75 mm) (3 pulgadas). El tamaño máximo del material no debe superar la mitad del espesor de la capa compactada. Si los documentos del proyecto indican que el solado y/o el atraque para la tubería se deben ejecutar en concreto simple, este se debe elaborar según lo especificado en el artículo 630. La resistencia mínima a la compresión, si los documentos del proyecto no indican otra cosa, debe ser de catorce megapascales (14 MPa) a veintiocho días (28 d), medida según la norma de ensayo INV E-410/ NTC 673.

661.2.3 Sello para juntas

Las juntas para las uniones de los tubos se deben sellar con empaques flexibles que cumplan la especificación ASTM C990 y/o la ASTM C443, con mortero o con lechada de cemento. Si se emplea mortero, este debe ser una mezcla volumétrica de una parte de cemento hidráulico y tres de arena aprobada, con el agua necesaria para obtener una mezcla seca, pero trabajable.

661.3 Equipo

Se requieren, principalmente, elementos para la producción de agregados pétreos y fabricación y curado de la mezcla de concreto, conforme se indica en el numeral 630.3 del artículo 630; herramientas adecuadas para la correcta colocación del refuerzo; moldes para la fabricación de los tubos, y equipos para su transporte y colocación en el sitio de las obras.

661.4 Ejecución de los trabajos

661.4.1 Preparación de las condiciones de instalación de la tubería

La preparación de las condiciones de instalación de la tubería se debe hacer de acuerdo con lo indicado en el numeral 660.4.1 del artículo 660, Tubería de concreto simple.

661.4.2 Colocación del material de solado para la tubería

La colocación del material de solado para la tubería se debe llevar a cabo, según lo indicado en el numeral 660.4.2 del artículo 660.

661.4.3 Colocación de la tubería

La colocación de la tubería se debe realizar de acuerdo con lo indicado en el numeral 660.4.3 del artículo 660.

661.4.4 Juntas

Para la elaboración de las juntas, se deben aplicar las indicaciones del numeral 660.4.4 del artículo 660.

661.4.5 Atraque

La colocación del material de atraque para la tubería se debe realizar de acuerdo con lo indicado en el numeral 660.4.5 del artículo 660.

661.4.6 Rellenos

Para la ejecución de los rellenos, se deben aplicar las indicaciones del numeral 660.4.6 del artículo 660.

661.4.7 Limpieza

Terminados los trabajos, el constructor debe limpiar la zona de las obras y retirar los materiales sobrantes, transportarlos y disponerlos en sitios aceptados por el interventor y de acuerdo con procedimientos aprobados por este.

661.4.8 Manejo ambiental

En adición a los aspectos generales indicados en el artículo 106, Aspectos ambientales, todas las actividades que se ejecuten en cumplimiento a la presente especificación se deben realizar teniendo en cuenta lo establecido en las normas y disposiciones vigentes sobre la conservación del ambiente y los recursos naturales. De esta manera, dichas actividades deben estar incluidas en los costos del proyecto, por tanto, no deben ser objeto de reconocimiento directo en el contrato.

661.5 Condiciones para el recibo de los trabajos

661.5.1 Controles

Se deben llevar a cabo los mismos controles generales indicados en el numeral 660.5.1 del artículo 660.

661.5.2 Condiciones específicas para el recibo y las tolerancias

661.5.2.1 Calidad de la tubería

Los tubos de concreto reforzado deben cumplir los criterios de aceptación establecidos en la NTC 401. El interventor se abstiene de aceptar el empleo de tubos que presenten:

- Fracturas o grietas que atraviesen la pared, excepto una grieta en el extremo que no exceda el espesor de la junta.
- Defectos que indiquen dosificación, mezcla o moldeos inadecuados.
- Defectos superficiales tales como hormigueros o textura abierta.
- Extremos dañados que impidan la construcción aceptable de juntas.
- Cualquier grieta continua que tenga un ancho superficial de tres décimas de milímetro o mayor (≥ 0,3 mm) y se extienda por una longitud de trescientos milímetros o más (≥ 300 mm), independientemente de su posición en el tubo.

El constructor debe suministrar, sin costo para el Instituto Nacional de Vías (INVÍAS), el número requerido de tubos para los ensayos, los cuales se deben elegir al azar y corresponden a tubos que no serían rechazados bajo las exigencias de esta especificación. El número de tubos no debe exceder el dos por ciento (2 %) del total necesario en la obra para cada diámetro. El constructor debe presentar al interventor una certificación con los resultados de los ensayos de calidad efectuados por el fabricante al lote de tubos del cual forman parte los suministrados a la obra. Esta certificación en ningún caso debe ser motivo suficiente para la aceptación de dichos tubos por parte del interventor. Los tubos se deben someter al ensayo de resistencia al aplastamiento, según la NTC 3676 y la carga necesaria para producir una grieta de cero comas tres milímetros (0,3 mm) o la carga última, no puede ser inferior a la prescrita en la tabla que corresponda de la NTC 401 para cada una de las clases existentes. La tubería es aceptable bajo los ensayos de resistencia, si todos los tubos probados cumplen los requisitos. En caso contrario, el constructor, a su costa, debe suministrar para reensayo dos (2) tubos adicionales por cada tubo que falle y la tubería se debe considerar aceptable solamente cuando todos los tubos reensayados cumplan los requisitos de resistencia. De cada tubo satisfactorio por resistencia, se debe tomar una muestra para el ensayo de absorción según la NTC 3676, la cual debe tener una masa mínima de un kilogramo (1 kg), y estar libre de astillamientos y grietas visibles, y representar el espesor total del tubo. Si ningún valor de absorción excede el nueve por ciento (9 %), el lote se debe considerar satisfactorio. Si la absorción de algún tubo supera dicho límite, se debe tomar otra muestra del mismo tubo para que su resultado reemplace al anterior. Si el valor vuelve a superar el límite admisible, se debe rechazar el lote representado por el conjunto de tubos ensayados. Los tubos que se hayan sometido solamente al ensayo de la formación de la grieta de cero coma tres milímetros (0,3 mm) y que satisfagan los requisitos a la carga de grieta de cero coma tres milímetros (0,3 mm), se deben aceptar para el uso. Para tal efecto, el fabricante debe suministrar al constructor el protocolo de prueba correspondiente. En adición a las pruebas anteriores y en el evento de que los tubos sean fabricados directamente en la obra en instalaciones adecuadas para ello, la calidad de la mezcla de concreto elaborada se debe evaluar, según lo descrito en el numeral 630.5.2 del artículo 630. Si la resistencia de los cilindros de concreto elaborados en la obra no cumple los criterios de aceptación del citado numeral, se pueden tomar núcleos de paredes de los tubos representados por dicho concreto, si la armadura lo permite, y la resistencia de cada uno debe ser por lo menos igual a la de diseño. Si algún núcleo no satisface este requisito, se debe tomar otro del mismo tubo y se debe repetir la prueba. Si el resultado de esta tampoco es satisfactorio, o si la armadura no permite tomar los cilindros, se debe rechazar el tubo. Los orificios que dejen los núcleos en los tubos finalmente aceptados se deben rellenar y sellar adecuadamente, sin costo para INVÍAS, de manera tal que la sección y el aspecto del tubo sean aprobados por el interventor.

661.5.2.2 Tolerancias en las dimensiones de los tubos de concreto reforzado

Las tolerancias permitidas se indican en la Tabla 661-1. Los tubos que presenten variaciones localizadas de espesor de pared, en exceso de las recién mencionadas, se deben aceptar si cumplen las exigencias de resistencia al aplastamiento y mínima cobertura del refuerzo, de acuerdo con los requisitos de la NTC 401.

661.5.2.3 Tolerancias en el refuerzo

661.5.2.3.1 Posición

La máxima variación admisible en la posición del refuerzo debe ser el mayor valor entre más o menos diez por ciento (± 10 %) del espesor de diseño de la pared o más o menos trece milímetros (± 13 mm). Sin embargo, se deben aceptar tubos por fuera de esta tolerancia si las muestras representativas satisfacen el ensayo de resistencia al aplastamiento. No obstante, en ningún caso se deben aceptar tubos cuya armadura tenga un recubrimiento inferior a trece milímetros (13 mm) en la pared interna o en la externa, excepto en la superficie de acople en las juntas.

Tabla 661 — 1. Tolerancias permitidas en las dimensiones de los tubos de concreto reforzado

Diámetro nominal interno (mm)	Variación (±) permitida en diámetro nominal interno (mm)	Variación (±) permitida en espesor de pared (mm)	Disminución permitida en longitud del tubo (mm)	Variación permitida en la longitud de dos lados opuestos del tubo
600	1,5 %	El valor que resulte mayor entre 5 % del espesor de pared especificado o de diseño y 5 mm.	No debe ser superior a 10 mm por metro de longitud de tubo con un máximo total de 13 mm para cualquier longitud	No debe ser superior a 6 mm para tuberías de 600 mm de diámetro, y no más de 10 mm por metro de longitud para los diámetros mayores, hasta un valor máximo de
685 — 3 650	1,0 %	Espesores de pared mayores a los requeridos en el diseño no son causa de rechazo de los tubos.	de este. Todo con respecto de la longitud de tubo especificada por el fabricante.	16 mm en cualquier longitud de tubo de hasta 2 150 mm de diámetro interno; y un máximo de 19 mm para diámetros internos mayores.

Nota: para diámetros diferentes, se debe consultar la NTC 401.

661.5.2.3.2 Área de refuerzo

Se debe considerar que el refuerzo satisface los requisitos de diseño si el área, computada sobre la base del área nominal de las varillas empleadas, iguala o excede los requisitos de la respectiva tabla de diseño de la NTC 401. Cuando se usen canastas interior y exterior, el diseño de la interior puede tener, como mínimo, el ochenta y cinco por ciento (85 %) del área de diseño elíptica, y la canasta exterior el sesenta y cuatro por ciento (64 %) de la misma, siempre y cuando la suma de las dos (2) áreas no resulte inferior al ciento cincuenta y tres por ciento (153 %) del área de diseño elíptica.

661.5.2.4 Material de solado, atraque y relleno

En relación con la calidad y la compactación de los materiales para solado, atraque y relleno diferentes al concreto, se deben aplicar los criterios expuestos en los numerales 600.5.2.1 y 610.5.2.2.1 del artículo 610.

661.5.2.5 Concreto para solado y atraque

En relación con la calidad de los materiales para la mezcla, se deben aplicar los criterios expuestos en el numeral 630.5.1 del artículo 630.

En relación con la calidad de la mezcla elaborada, se debe aplicar lo descrito en el numeral 630.5.2 del mismo artículo. Por tanto, si la resistencia de los cilindros tomados en la obra no es satisfactoria, el interventor debe rechazar el volumen del

concreto correspondiente y el constructor debe demoler la obra ejecutada, remover los escombros, cargarlos, transportarlos y depositarlos en sitios aprobados por el interventor, mediante los procedimientos autorizados por este, y reconstruir el área afectada con una mezcla satisfactoria, operaciones que debe realizar sin costo adicional alguno para INVÍAS.

El interventor no debe autorizar la colocación del concreto para solado si la superficie de apoyo no se encuentra correctamente preparada.

661.5.2.6 Calidad del producto terminado

La tubería puede ser objeto de rechazo si en tramos rectos presenta variaciones de alineamiento superiores a diez milímetros por metro (10 mm/m).

El interventor tampoco debe aceptar los trabajos si, a su criterio, las juntas están deficientemente elaboradas.

Todos los materiales defectuosos y los desperfectos en los trabajos ejecutados deben ser reemplazados y subsanados por el constructor, sin costo adicional para INVÍAS, de acuerdo con las instrucciones del interventor y su aprobación.

661.6 Medida

La unidad de medida de la tubería debe ser el metro (m), aproximado a la décima (0,1), de tubería de concreto reforzado suministrada y colocada de acuerdo con los documentos del proyecto y esta especificación, aprobada por el interventor. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

La medida se debe realizar entre las caras exteriores de los extremos de la tubería o los cabezales, según el caso, a lo largo del eje longitudinal y siguiendo la pendiente de la tubería. No se debe medir, para efectos de pago, ninguna longitud de tubería colocada fuera de los límites aprobados por el interventor.

661.7 Forma de pago

El pago se debe hacer al precio unitario del contrato, según el diámetro interno de la tubería, por toda obra ejecutada de acuerdo con esta especificación y aprobada por el interventor. El precio unitario debe cubrir todos los costos por concepto del suministro de los materiales requeridos para construir los tubos, incluido el acero de refuerzo, la elaboración y curado de los tubos, su transporte y correcta colocación; el suministro de los materiales requeridos para las juntas y la elaboración de estas; las conexiones de cabezales, cajas de entrada y aletas; el suministro e instalación de los entibados que se puedan requerir; la señalización preventiva de la vía y el ordenamiento del tránsito automotor durante la ejecución de las obras; la limpieza de la zona de los trabajos; el transporte y la disposición de los materiales sobrantes

y, en general, todos los costos relacionados con la correcta ejecución de los trabajos especificados. El precio unitario debe incluir los costos de administración e imprevistos y la utilidad del constructor. Se exceptúan los costos relacionados con el desmonte y la limpieza, los cuales se deben cubrir con cargo al artículo 200, Desmonte y limpieza; los de excavación, los cuales se deben considerar en el artículo 600, Excavaciones varias; los de rellenos de solado, atraque y relleno de zanja, que se deben cubrir con cargo a los artículos 610, Rellenos para estructuras; o 630, Concreto estructural; según se aplique; y los de la construcción de cabezales, cajas de entrada y aletas, los cuales deben quedar cubiertos por los artículos 630, Concreto estructural; y 640, Acero de refuerzo.

661.8 Ítem de pago

Ítem	Descripción	Unidad
661.1	Tubería de concreto reforzado, clase de mm de diámetro interior	Metro (m)

Nota: se debe elaborar un ítem de pago para cada clase de tubería de concreto reforzado y cada diámetro que tengan las tuberías consideradas en los documentos del proyecto.

ITEM DE PAGO

Tubería de concreto reforzado, clase III de 900 mm de diámetro interior (m)

4.6. CONCRETO CLASE F

630.1 Descripción

Esta especificación consiste en el suministro de materiales, fabricación, transporte, colocación, vibrado, curado y acabado de los concretos de material cementante de tipo hidráulico, utilizados para la construcción de puentes, estructuras de drenaje, muros de contención y estructuras en general, de acuerdo con los documentos del proyecto.

Algunos elementos o estructuras de concreto deben cumplir adicionalmente las especificaciones del Instituto Nacional de Vías (INVÍAS) realizadas para un fin específico. A continuación, se presenta una lista de dichas especificaciones disponibles por tipo de estructura o elemento:

- Artículo 500, Pavimento de concreto hidráulico.
- Artículo 505, Base de concreto hidráulico.
- Artículo 510, Pavimento de adoquines de concreto.
- Artículo 620, Pilotes prefabricados de concreto.
- Artículo 621, Pilotes preexcavados.
- Artículo 632, Barandas de concreto.
- Artículo 660, Tubería de concreto simple.
- Artículo 661, Tubería de concreto reforzado.
- Artículo 671, Cunetas revestidas en concreto.
- Artículo 672, Bordillos en concreto.
- Artículo 680, Muros de tierra estabilizada mecánicamente con paneles de concreto.
- Y todas las demás estructuras de concreto estructural reglamentadas en las especificaciones INVÍAS.

30.2 Materiales

630.2.1 Concreto estructural

Está conformado por una mezcla homogénea de material cementante, agregados, agua, aditivos y eventualmente adiciones suplementarias y/o complementarias; materiales que deben cumplir los requisitos básicos que se mencionan a continuación.

630.2.1.1 Cemento hidráulico

El cemento hidráulico y su suministro deben cumplir el artículo 501, Suministro de cemento hidráulico. Se pueden utilizar cementos bajo la denominación ASTM C150 y ASTM C595.

El constructor debe presentar los resultados de todos los ensayos físicos relacionados con el material cementante, como parte del diseño de la mezcla. De igual forma, todo material cementante usado en obra debe ser de la misma marca, tipo y planta de fabricación al empleado en el diseño de la mezcla. Es posible emplear diferentes tipos de mate-rial cementante siempre que se cuente con el diseño de la mezcla, mezclas de prueba y la aprobación del interventor.

Si por alguna razón el material cementante ha fraguado parcialmente o contiene terrones del producto endurecido, no se puede utilizar. Tampoco se debe utilizar el material cementante sobrante en bultos abiertos en jornadas anteriores, cuando este sea suministrado en bolsas.

630.2.1.2 Adiciones suplementarias

Cuando la adición suplementaria es incluida como materia prima para la fabricación del clínker o incluida durante la fabricación del cemento, se debe verificar que el material cementante resultante cumpla las exigencias de la NTC 121.

En caso de que la adición suplementaria sea incluida en la elaboración del concreto por parte del constructor o proveedor del concreto, se deben presentar los resultados de todos los ensayos físicos y químicos relacionados con las adiciones suplementarias, como parte del diseño de la mezcla. Las cenizas volantes y puzolanas naturales calcinadas o crudas deben satisfacer las exigencias de la NTC 3493 (ASTM C618) o ACI 232.1R, Reporte sobre el uso de puzolanas naturales o procesadas en concreto; las escorias de alto horno la NTC 4018 (ASTM C989) o ACI 233R, Escoria en concreto y mortero; y el humo de sílice la norma ASTM C1240.

No se permite el uso de otros tipos de adiciones diferentes a las mencionadas anteriormente.

No se deben utilizar adiciones suplementarias que presenten grumos o indicios de prehidratación. Se debe garantizar que la adquisición de la adición suplementaria cumpla los requisitos legales ambientales vigentes.

630.2.1.3 Agregados

En el presente numeral, se especifican los requisitos de los agregados para concreto estructural. Se permite el uso de agregados gruesos reciclados de tipo RCD (Residuos de Construcción y Demolición) si se comprueba que el desempeño de estos es, como mínimo, igual o mejor que el de los agregados gruesos que cumplen los requisitos de este artículo y son aprobados por el interventor.

Para la elaboración del concreto estructural, la cantidad de agregado grueso reciclado por adicionar en la mezcla de concreto no debe superar el diez por ciento (10 %) en peso sobre el contenido total de agregado grueso. En todos los casos en que se use se debe demostrar que no se afectan las condiciones de durabilidad del concreto.

Aparte de los requisitos presentados en este numeral, durante la selección y la caracterización de los agregados, se debe realizar la evaluación de la reactividad y el diseño de la mitigación de la reacción álcali-agregado descrito en el numeral 630.2.6.1.3.

Se debe garantizar que la adquisición del agregado cumpla los requisitos legales ambientales vigentes. Los documentos como títulos, licencias y permisos se deben entregar al interventor.

630.2.1.3.1 Agregado fino

Se considera como tal, a la fracción que pase el tamiz de 4,75 mm (nro. 4). Debe provenir de arenas naturales o de la trituración de rocas, gravas, escorias siderúrgicas u otro producto que resulte adecuado, a criterio del interventor. Cuando las arenas son de origen calizo, el porcentaje de arena de trituración no puede constituir más del quince por ciento (15 %) del agregado fino, o hasta el treinta por ciento (30 %) si con un programa experimental aprobado por el interventor se demuestra que no tienen incidencia en el comportamiento del concreto en estado endurecido.

Si en la mezcla se emplean arenas provenientes de escorias siderúrgicas, se debe comprobar que no contengan silicatos inestables ni compuestos ferrosos, ni cualquier otro material que genere algún mecanismo de daño en el concreto o disminución de la resistencia.

El agregado fino debe cumplir los requisitos que se indican en la Tabla 630-1 y su gradación se debe ajustar a la indicada en la Tabla 630-2.

En ningún caso, el agregado fino puede tener más de cuarenta y cinco por ciento (45 %) de material retenido entre dos tamices consecutivos de los mostrados en la Tabla 630 - 2.

Un agregado fino que no cumpla los requisitos de granulometría y módulo de finura especificados en este numeral puede ser aceptado si se demuestra, a criterio del interventor, que hay una evidencia adecuada de comportamiento satisfactorio de concretos del mismo tipo y para el mismo uso, construidos con ese agregado.

Tabla 630 - 1. Requisitos del agregado fino para concreto estructural

Característica	Norma de ensayo INV	Requisito
Composición		
Granulometría: - Análisis granulométrico de los agregados finos - Material que pasa tamiz de 0,075 mm (nro.200)	E-213 E-214	Ver Tabla 630 — 2
Módulo de finura (Nota 1)	E-213	2,3 — 3,1
Durabilidad (O)		
Pérdidas en el ensayo de solidez en sulfatos, máximo (%). (Nota 2): - Sulfato de sodio - Sulfato de magnesio	E-220	10 15
Limpieza (F)		
Terrones de arcilla y partículas deleznables, máximo (%). (Nota 3)	E-211	3
Partículas livianas, máximo (%): - Cuando la apariencia superficial del concreto sea de importancia, máximo (%) - Todos los demás concretos, máximo (%)	E-221	0,5 1,0
Contenido de materia orgánica (F)		
Color más oscuro permisible	E-212	Igual al color de referencia o de la placa orgánica nro. 3

Característica	Norma de ensayo INV	Requisito
Características químicas (O)		
Contenido de sulfatos, expresado como SO ₄ ", máximo (%)	E-233	1,2

Nota 1: adicional a esta especificación, es necesario probar el comportamiento competente del material en obras ya construidas. Durante el período de construcción no se permiten variaciones mayores de dos décimas (0,2) en el módulo de finura, con respecto al valor correspondiente a la curva adoptada para la fórmula de trabajo. Cuando se presenten variaciones superiores del módulo de finura, se debe revisar que no haya modificaciones a la curva adoptada de trabajo y se deben chequear afectaciones en los diseños. Si hay variaciones, se debe ajustar una nueva curva de trabajo y se debe corregir el diseño en caso de que haya lugar.

Nota 2: el ensayo se puede realizar con sulfato de sodio o sulfato de magnesio.

Nota 3: el porcentaje de terrones de arcilla y partículas deleznables puede ser hasta de un tres por ciento (3 %) siempre y cuando no afecte la durabilidad y la resistencia del concreto.

Si el agregado fino no cumple el requisito indicado en la Tabla 630-1 para el contenido de materia orgánica, se puede aceptar si al ser ensayado en relación con el efecto de las impurezas orgánicas sobre la resistencia del mortero, se obtiene una resistencia relativa a siete días (7 d) no menor de noventa y cinco por ciento (95 %), calculada de acuerdo con el procedimiento descrito en la norma de ensayo ASTM C87.

Tabla 630 - 2. Granulometría del agregado fino para concreto estructural

			Tar	miz (mm / U.	S. Standard)		
Total	9,5	4,75	2,36	1,18	0,600	0,300	0,150	0,075
Tipo de gradación	3/8 Pulgada	Nro. 4	Nro. 8	Nro. 16	Nro. 30	Nro. 50	Nro. 100	Nro. 200
				Pasa tam	niz (%)			
Única	100	95 — 100	80 — 100	50 — 85	25 — 60	5 — 30	0 — 10	0 — 3 (Nota 1 y Nota 2)

Nota 1: para concretos que no estén sometidos a abrasión, el límite para el material más fino que el tamiz de 0,075 mm (nro. 200) debe ser de máximo cinco por ciento (5 %).

Nota 2: para finos obtenidos de trituración u otros agregados reciclados, si el material más fino que el tamiz de 0,075 mm (nro. 200) compuesto de polvo de trituración, esencialmente libre de arcillas o esquistos, este límite puede ser cinco por ciento (5 %) para concretos sometidos a abrasión y máximo siete por ciento (7 %) para concretos no sujetos a abrasión.

630.2.1.3.2 Agregado grueso

Se denomina agregado grueso la porción del agregado retenida en el tamiz de 4,75 mm (nro. 4). Dicho agregado debe estar compuesto de grava, grava triturada o roca triturada o su combinación o concreto triturado fabricado con cemento hidráulico que cumpla los requisitos para el agregado de este artículo. Sus fragmentos deben ser limpios, resistentes y durables, sin exceso de partículas planas, alargadas, blandas o desintegrables. Debe estar exento de polvo, tierra, terrones de arcilla u otras sustancias objetables que puedan afectar adversamente la calidad de la mezcla. No se permite la utilización de agregado grueso proveniente de escorias de alto horno.

El agregado grueso debe cumplir los requisitos que se indican en la Tabla 630-3 y su gradación se debe ajustar a alguna de las indicadas en la Tabla 630-4. La gradación por utilizar es la especificada en los documentos del proyecto para cada tipo de concreto, cuyo tamaño máximo depende de la

estructura que se trate, la separación del refuerzo y el tipo de concreto especificado.

La curva granulométrica obtenida al mezclar los agregados grueso y fino en el diseño y construcción del concreto debe ser continua y asemejarse a las teóricas obtenidas al apli-car las fórmulas de Fuller, Bolomey o cualquier otro método validado por alguna institución técnica de reconocido prestigio nacional o internacional y aprobado por el interventor.

Optimización granulométrica: en caso de no cumplir los requisitos propuestos por algunas de las metodologías de dosificación mencionadas anteriormente, se pueden realizar optimizaciones granulométricas con base en métodos de

empaquetamiento granular. El constructor debe revisar la propuesta con aprobación del interventor, mediante la elaboración de mezclas de prueba, con el fin de comprobar que las características proporcionadas en el diseño cumplan los requisitos del concreto tanto en estado fresco como en estado endurecido para el proyecto en particular.

Tabla 630 - 3. Requisitos del agregado grueso para concreto estructural

Característica	Norma de ensayo INV	Requisito
Dureza (O)		
Desgaste en la máquina de Los Ángeles, máximo (%): - En seco, 500 revoluciones, máximo (%) - En seco, 100 revoluciones, máximo (%)	E-218	40 8
Durabilidad (O)		
Pérdidas en ensayo de solidez en sulfatos, máximo (%). (Nota 1): - Sulfato de sodio - Sulfato de magnesio	E-220	12 18

Característica	Norma de ensayo INV	Requisito
Limpieza (F)		
Terrones de arcilla y partículas deleznables, máximo (%). (Nota 2)	E-211	3
Partículas livianas, máximo (%)	E-221	0,5
Geometría de las partículas (F)		
Índice de alargamiento, máximo (%)	E-230	25
Índice de aplanamiento, máximo (%)	E-230	25
Características químicas (O)		
Contenido de sulfatos, expresado como SO ₄ ", máximo (%)	E-233	1,0

Nota 1: el ensayo se puede realizar con sulfato de sodio o sulfato de magnesio.

Nota 2: para concreto arquitectónico, el límite máximo es dos por ciento (2 %).

Tabla 630 — 4. Franjas granulométricas de agregado grueso para concreto estructural

Tipo	0						Tamiz (n	Tamiz (mm / U.S. Standard)	Standard						
de gradación	Jación	100	90	75	63	20	37,5	25,0	19,0	12,5	9,5	4,75	2,36	1,10	0,3
		4	3.7%	စ	2 1/2	2	1 1%	-	3/4	1/2	3/8	No. A	NI _{CO} O	Also 40	Nro.
INVÍAS	ASTM	Pulgadas	Pulgadas	Pulgadas	Pulgadas	Pulgadas	Pulgadas	Pulgada	Pulgada	Pulgada	Pulgada	40.4	NO.0	NO. 10	20
	3						P	Pasa tamiz (%)	(%)						
	6										100	85 - 100	10 - 40	0 - 10	0 - 5
	89									100	90 - 100	20 - 55	5 — 30	0 - 10	9 - 0
	8					-				100	85-100	10 - 30	0 - 10	9-0	
AG-19	7								100	90 - 100	40 - 70	0 — 15	0 - 5		
AG-25	67					-	•	100	90 - 100		20 - 55	0 - 10	0 - 5		
	9							100	90 - 100	20 - 55	0 15	0 - 5			
AG-38	57					-	100	95 100		25 - 60		0 - 10	0 - 5		
	56						100	90 - 100	40 - 85	10 - 40	0 15	0 - 5			
	2						100	90 - 100	20 - 55	0 - 10	9 - 0				
AG-50-1	467					100	95 — 100		35 - 70		10 - 30	0 - 5			
AG-50-2	4					100	90 - 100	20 - 55	0 — 15		0 - 5	ı			
AG-63-1	357	·			100	95 - 100		35 - 70		10 - 30		0 - 5			
AG-63-2	၈				100	95 - 100	35-70	0-15		0 - 5					
	2	·		100	90 - 100	35 - 70	0 — 15	·	0 - 5	ì					
	-	100	90 - 100		25 - 60		0 - 15		0 - 5						

El tamaño máximo nominal del agregado grueso no debe tener un valor mayor que ninguno de los siguientes:

- 1/5 de la menor separación entre los lados del encofra
- 1/3 de la altura de la losa.
- 3/4 del espaciamiento mínimo libre entre las barras o alambres individuales de refuerzo, paquetes de barras, tendones individuales, paquetes de tendones o ductos.

Los valores límite de tamaño máximo nominal se pueden omitir, si el interventor lo aprueba y el profesional facultado para diseñar la mezcla y los métodos de compactación del concreto garantizan la colocación sin hormigueros o vacíos.

630.2.1.3.3 Agregado liviano

El agregado liviano y el concreto estructural liviano deben cumplir lo requerido en la NTC 4045 (ASTM C330). Cuando el agre-gado liviano se utilice para realizar curado interno, debe cumplir lo establecido en la norma ASTM C1761.

630.2.1.3.4 Agregado para concreto ciclópeo

El agregado ciclópeo debe ser roca triturada o canto rodado de buena calidad, preferiblemente angular y su forma tendiente a ser cúbica. La elación entre las dimensiones mayor y menor de cada piedra no debe ser mayor que dos a uno (2:1).

El tamaño máximo admisible del agregado ciclópeo depende del espesor y del volumen de la estructura de la cual forma parte. En cabezales, aletas y obras similares con espesor no mayor de ochenta centímetros (80 cm) se admiten agregados ciclópeos con dimensión máxima de treinta centímetros (30 cm). En estructuras de mayor espesor se pueden emplear agregados de mayor tamaño, previa aprobación del interventor y con las limitaciones establecidas en el numeral 630.4.8.4.

El material constitutivo del agregado ciclópeo no puede presentar un desgaste mayor de cuarenta por ciento (40 %), al ser sometido a la prueba en la máquina de Los Ángeles, según la norma de ensayo INV E-219 (NTC 93).

630.2.1.4 Agua

El agua que se emplee para las mezclas de concreto hidráulico o para el curado de las estructuras de concreto, debe cumplir los requisitos de la norma ASTM C1602. No debe contener aceites, ácidos, azúcares, detergen-tes, sólidos disueltos, sales, materia orgánica o cualquier otra sustancia perjudicial para el concreto terminado.

En cualquier caso, se deben cumplir los requisitos dados en la Tabla 630 - 5 y en la Tabla 630 - 6.

Tabla 630 — 5. Requisitos para el agua de mezclado

Propiedad	Norma de ensayo	Límites
pH, minimo	NTC 3651 (ASTM D1293)	6,5
Resistencia a la compresión en cubos de mortero, porcentaje (%) mínimo en control a siete dias (7 d)	NTC 220 (ASTM C109)	90
Tiempo de fraguado, desviación respecto del tiempo de control (horas:minutos)	NTC 118 (ASTM C403)	de 1:00 inicial a 1:30 final

Para aprobar el agua con la que se piensa preparar la mezcla de concreto se deben realizar dos series de ensayos sobre cubos de mortero, según la NTC 220 (ASTM C109). En la primera serie se preparan los cubos de mortero con el agua que se desea emplear en la obra, mientras que en la segunda serie se utiliza agua destilada. Las resistencias promedio a la compresión a la edad de siete días (7 d) del mortero con el agua que se desea emplear en la obra deben ser superiores al noventa por ciento (90 %) de las obtenidas con el agua destilada.

En relación con el requisito sobre tiempo de fraguado, las medidas se realizan mediante la resistencia a penetración de morteros extraídos de muestras de concreto, elaboradas como se describió en el párrafo anterior.

Tabla 630 - 6. Límites químicos para el agua de mezclado

Contaminante	Norma de ensayo ASTM	Límite máximo (ppm) (Nota 1)
Ion Cloro (Cl ⁻)	C114	500 (Nota 2) o 1 000 (Nota 3)
Sulfatos (SO ₄ ")	C114	3 000
Álcalis como (Na ₂ O + 0,658 K ₂ O). (Nota 4)	C114	600
Sólidos totales	C1603	50 000

Nota 1: ppm corresponde a partes por millón.

Nota 2: concreto pretensado.

Nota 3: concreto reforzado.

Nota 4: se pueden emplear también las normas ASTM D4191 y ASTM D4192.

630.2.1.5 Aditivos y adiciones complementarias

Se pueden usar aditivos y adiciones complementarias de reconocida calidad que cumplan los requisitos normativos correspondientes, para modificar las propiedades del concreto, con el fin de que sea más adecuado para las condiciones particulares de la estructura a construir.

Los aditivos reductores de agua y para con-trol de fraguado deben cumplir los requisitos de la NTC 1299 (ASTM C494). Los inclusores de aire se deben ajustar a las exigencias de la norma ASTM C260. El concreto reforzado con fibras debe cumplir los requisitos de la NTC 5541 (ASTM C1116). Los pigmentos utilizados en concretos, con el propósito de producir mezclas coloreadas integralmente, deben cumplir la norma ASTM C979. Adicionalmente, se permite el uso de todos los aditivos que cumplan ACI 212.3R, Reporte de aditivos químicos para el concreto.

Su empleo se debe definir por medio de ensayos efectuados con antelación a la obra, con dosificaciones que garanticen el efecto deseado, sin perturbar las propiedades res-tantes de la mezcla.

Los aditivos y las adiciones complementarias deben estar libres de sustancias que, por su naturaleza o cantidad, afecten la resistencia o la durabilidad del concreto, armaduras, aceros de alta resistencia u otros elementos insertados.

Los aditivos que contengan altos contenidos de cloruros no deben ser adicionados al concreto reforzado, concreto preesforzado, concreto que contengan aluminio embebido o en concreto construido con encofrados permanentes de acero, a menos que se demuestre experimentalmente que no se afecta su durabilidad y sean aprobados por el interventor. También, se prohíbe el uso de aditivos ricos en álcalis solubles para la elaboración de cualquier tipo de concreto, a menos que se demuestre experimentalmente que no se afecta la durabilidad del concreto y sean aprobados por el interventor.

Para la validación de los aditivos y adiciones complementarias se deben realizar mezclas de prueba con los materiales por usar, en las cantidades establecidas para la mezcla en obra y en las condiciones específicas de sitio a las que está expuesta la estructura. Para establecer la dosis del aditivo se deben realizar mezclas de prueba con el fin de verificar el desempeño requerido. Las dosis ensayadas y aprobadas no se deben modificar a menos que se realicen nuevamente mezclas de prueba y se verifique el desempeño requerido.

Para todo aditivo o adición complementaria que se utilice como parte del diseño de la mezcla de concreto, el constructor debe presentar los resultados de todos los ensayos físicos y químicos que sean requeridos según el material y deben ser aprobados por el interventor.

El uso del aditivo es responsabilidad directa del constructor, así haya sido aprobado por el interventor.

El uso de aditivos y adiciones complementarias de cualquier naturaleza en las mezclas de concreto debe ser probado bajo las condiciones específicas del sitio de obra, de tal manera que se demuestre que no se afectan las propiedades y las características del concreto y se obtiene el desempeño deseado.

El proveedor debe suministrar un documento en donde se presenten las recomendaciones de uso del aditivo. El seguimiento, almacena-miento y demás requisitos para el uso del aditivo se deben realizar siguiendo el documento con las recomendaciones del proveedor.

630.2.2 Acero

En los documentos del proyecto se debe indicar el acero de refuerzo necesario para las diferentes estructuras de concreto. Al respecto, se deben cumplir los requisitos del artículo 640, Acero de refuerzo.

Para elementos preesforzados, el suministro, la colocación y el tensionamiento de acero de preesfuerzo, se debe dar cumpliendo a los requisitos del artículo 641, Acero de preesfuerzo.

Se deben tomar todas las medidas necesarias para evitar la corrosión del acero de refuerzo, tales como:

- Almacenar adecuadamente el acero y evitar su contacto con la humedad.
- Limitar el contenido total de cloruros en la mezcla de concreto, según las tablas de tipo de exposición y requisitos presenta-das en este artículo.
- Garantizar que los recubrimientos cumplen los requisitos mínimos de diseño.
- Dosificar mezclas con relaciones agua/material cementante (a/mc) bajas que promuevan concretos densos y de baja permeabilidad.
- En vez de acero (barras, mallas, fibras) utili-zar otros materiales que no sean afectados por los cloruros. Se debe establecer por parte del diseñador y el interventor la viabilidad de esta medida.
- Recubrir el acero con materiales que sirvan como barrera física a los agentes agre-sivos. Se debe establecer por parte del diseñador y el interventor la viabilidad de esta medida.

El concreto reforzado con fibras debe cumplir los siguientes requisitos:

Las fibras deben cumplir la norma ASTM C1116.

- Se debe aplicar el método de ensayo presentado en la norma ASTM C1609.
- El tipo de fibra, la cantidad y las características de colocación de las fibras deben ser determinadas por el diseñador, esto debe quedar registrado en los documentos del proyecto y debe ser cumplido en obra.

630.2.3 Productos para el curado del concreto

El curado del concreto debe seguir los lineamientos de la guía ACI 308R, Guía para curado del concreto.

Este se puede llevar a cabo a través de:

- Métodos que mantienen un ambiente húmedo mediante la aplicación continua o frecuente de agua por medio de inundación, rociado, nebulización o cubiertas húmedas saturadas.
- Métodos que mantienen la presencia de parte del agua de mezclado de concreto, durante el periodo inicial de endurecimiento, mediante materiales que sellan la superficie expuesta, tales como láminas impermeables de papel o plástico o con la aplicación de compuestos químicos para formar membranas impermeables de curado.
- Métodos que aceleran la ganancia de resistencia suministrando calor y humedad adicional al concreto, esto se logra normal-mente con la aplicación de vapor de agua directo, serpentines de calentamiento embebidos en el concreto o formaletas calentadas eléctricamente.
- Otros métodos que fomentan la retención del agua dentro del concreto mediante la utilización de productos químicos dentro de la masa, desde que no se afecten las propiedades establecidas para el concreto.

En caso de usar láminas de curado que pue-den ser de polietileno blanco o de papel, se debe cumplir la norma ASTM C171. En caso de usar membranas de curado se debe cumplir la norma ASTM C309. El agua usada para el curado debe cumplir los requisitos del numeral 630.2.1.4 y no debe ser más fría en once grados Celsius (11 °C) que la tempera-tura interna del concreto.

Para cualquier metodología de curado que se realice en la estructura se debe hacer curado estándar y curado en campo, conforme lo establecido en la norma INV E-420/NTC 550, es decir, así como se toman muestras para el control de la calidad de la mezcla, se deben preparar y curar especímenes en las condiciones de la obra (elementos cerca de la estructura) para determinar la eficiencia del curado y la protección del concreto de la estructura.

La efectividad de los productos para el curado del concreto se debe demostrar mediante experiencias previas exitosas o ensayos al inicio de la colocación del concreto.

630.2.4 Productos para las juntas

Cuando el diseño lo requiera en los documentos del proyecto, el diseñador debe proporcionar la ubicación y los detalles de todas las juntas de construcción, contracción y dilatación, estos detalles deben ser seguidos por el constructor en obra. El material utilizado para la elaboración de las juntas debe ser aplicado o instalado según las recomendaciones consignadas en la ficha técnica del producto suministrada por el fabricante. Los productos para juntas deben cumplir los requisitos del artículo 500.

630.2.5 Resina polimérica y material para reparación parcial de estructuras en concreto

Cuando se trate de anclaje de barras, repa-ración de fisuras y puente de adherencia para reparaciones, se debe usar un material que cumpla los requisitos establecidos en la norma ASTM C881. La selección del tipo de resina epóxica debe estar en función del tipo de adherencia, el grado de viscosidad (baja, media o alta), la clase (rangos de temperatura para su aplicación) y el color que estén planteados en los documentos del proyecto.

En anclajes con consideraciones de riesgo sísmico o concreto fisurado se deben considerar anclajes de resinas epóxicas que estén acorde con la ACI 355.4, Calificación de anclajes adhesivos postinstalados en concreto.

Para la reparación de desportillamientos y para el tratamiento de juntas de emergencia, se debe utilizar un mortero base cemento de alta especificación que cumpla los requisitos de la norma ASTM C928 tipo 3.

En todo caso, las resinas poliméricas y los materiales para la reparación parcial de estructuras en concreto deben ser aprobados por el interventor.

630.2.6 Requisitos de durabilidad, resistencia y clase del concreto

El diseño de mezcla de cada tipo de concreto debe cumplir todos los requisitos de:

- Durabilidad
- Clase de concreto
- Resistencia

Para ello, se deben tomar como requisitos límite, los parámetros más conservadores de estos tres aspectos.

Una vez definido el diseño de la mezcla de cada tipo de concreto por usar en obra, se debe entregar al interventor la caracterización de la mezcla de concreto, entre los documentos del proyecto. Cada tipo de concreto debe estar caracterizado, como mínimo, con los siguientes parámetros:

- Tipo de uso: concreto pretensado, posten-sado, reforzado, liviano, simple o ciclópeo.
- Tipo de colocación especial, si es aplicable. Por ejemplo: para instalar con bomba, para instalar bajo agua (tremie).
- Categoría y clase de exposición: se debe definir de acuerdo con el numeral 630.2.6.1.
- Reactividad álcali-sílice y álcali-carbonato.
- Requisitos asociados a la clase de exposición, según el numeral 630.2.6.1: relación a/mc, resistencia mínima a la compresión, contenido de aire y tipo de material cementante, entre otros.
- Tipo de cemento hidráulico y adiciones suplementarias, el cual debe ser definido en función de las condiciones particulares de cada estructura, teniendo en cuenta los requisitos asociados a la clase de exposición.
- Aditivos y adiciones complementarias, en el caso de ser requeridas.
- Tamaño máximo y tipo de gradación del agregado grueso.
- Relación a/mc, valor máximo.
- Mínima resistencia a la compresión (norma de ensayo INV E-410/NTC 673) para una edad específica.
- Asentamiento (norma de ensayo INV E-404/NTC 396), intervalo de valores, pero en caso de mezclas muy fluidas se debe realizar el ensayo para medir el flujo libre (NTC 5222).
- Contenido de aire (norma de ensayo INV E-406/NTC 1032), intervalo de valores.
- En caso de usar concretos especiales, se debe determinar el método constructivo.

630.2.6.1 Durabilidad

El concreto hidráulico se debe diseñar para las resistencias especificadas en los documentos del proyecto y para requisitos de durabilidad, según las condiciones de exposición. Además, se debe tener en cuenta el tipo de refuerzo de la estructura, especialmente en relación con los requisitos de corrosión del acero.

El diseño por durabilidad se puede hacer de manera prescriptiva o por desempeño verificado, según se explica a continuación. Así mismo, no se pueden combinar los dos métodos en el diseño. Si ambos llegaran a quedar especificados, deben prevalecer para el diseño los requisitos más exigentes.

Es responsabilidad del diseñador establecer los requisitos de durabilidad aplicables, con base en las condiciones de exposición (FSPC) de la estructura de concreto hidráulico, tanto para métodos prescriptivos como para métodos por desempeño verificado. El constructor puede optar por construir la obra utilizando uno u otro método.

630.2.6.1.1 Método prescriptivo

Se deben definir las condiciones de exposición de la estructura de concreto y clasificarla según la categoría y grado de severidad, con el objetivo de determinar los requisitos por durabilidad que debe cumplir la mezcla.

El diseñador debe consignar en los documentos del proyecto, las categorías de exposición de forma completa según la Tabla 630 - 7.

Por ejemplo, F0S1P0C2, para un concreto que no está expuesto a ciclos de congelamiento y descongelamiento (F0), con exposición moderada a sulfatos (S1), sin requisitos de permeabilidad (P0), y concreto reforzado que está expuesto a la humedad y a fuentes externas de cloruros (C2).

Sin importar los requisitos dados por el tipo de exposición o resistencia, se deben cumplir los requisitos de material cementante, expresados como el cemento hidráulico más los cementantes suplementarios (puzolanas), de acuerdo con lo establecido en la Tabla 630-7.

La Tabla 630 — 7 presenta las categorías y las clases de exposición para las estructuras de concreto hidráulico. Como una estructura puede estar expuesta a dos o más categorías de exposición, se deben aplicar los requisitos prescriptivos más estrictos que se especifican para cada requisito de formulación (relación a/mc; f´c, y requisitos adicionales, tipo de cementantes, etc.).

Se deben aplicar los criterios de exposición para corrosión solo para estructuras de concreto hidráulico reforzado con acero, como mallas de refuerzo, macrofibras y microfibras de acero, barras de refuerzo, entre otros.

Tabla 630 — 7. Categorías de exposición, severidad y requisitos prescriptivos para el diseño por durabilidad del concreto

Categoría Severidad Clase No R0 aplicable F1 Congelamiento Severa F2 y deshielo y deshielo severa F3				4	R	Requisitos mínimos adicionales	nos adiciona	les
Moderada Severa Severa		Condición	Hel. a/mc máx. (Nota 9)	nín. (MPa)	ပိ	Contenido de aire	9	Límites en los cementantes
Moderada Severa severa		Concreto no expuesto a ciclos de congelamiento y deshielo		17				
S evera Muy severa		Concreto expuesto a ciclos de congelamiento y deshielo y exposición ocasional a la humedad	0,55	24		Tabla 630 – 8		
		Concreto expuesto a ciclos de congelamiento y deshielo y en contacto continuo con la humedad	0,45	31		Tabla 630 – 8		
		Concreto expuesto a ciclos de congelamiento y deshielo, que está en contacto continuo con la humedad y expuesto a productos químicos descongelantes	0,40	35		Tabla 630 – 8		Tabla 630 – 9
	Sulfatos solubles en	Sulfato (SO4)			Tipos de	Tipos de material cementante (Nota 3)	ıntante	Heade
	agua (SO4) en el suelo, porcentaje (%) en peso (Nota 1)	disuelto en agua (ppm) (Nota 2)			ASTM C150	ASTM C595	NTC 121	aditivo cloruro de calcio
No S0 aplicable	30 SO ₄ " < 0,10	SO ₄ " < 150	N/A	17	Sin restricción en el tipo	Sin restricción en el tipo	Sin restricción en el tipo	Sin restricción
Sulfato Moderada S1	0,10 s SO ₄ <	150 s SO ₄ " < 1500	0,50	58	II (Nota 4 y Nota 5)	Tipos con designación MS	MS	Sin restricción

						ď	Bequisitos mínimos adicionales	nos adicions	es
Severidad	Clase	Cond	Condición	Rel. a/mc máx. (Nota 9)	f'c mín. (MPa)	ဝိ	Contenido de aire		Límites en los cementantes
		Sulfatos solubles en	Sulfato (SO4)			Tipos de	Tipos de material cementante (Nota 3)	entante	Heode
		agua (\$04) en el suelo, porcentaje (%) en peso (Nota 1)	disuelto en agua (ppm) (Nota 2)			ASTM C150	ASTM C595	NTC 121	aditivo cloruro de calcio
Severa	88	0,20≤SO ₄ "< 2,00	1 500 s SO ₄ " < 10 000	0,45	31	V (Nota 5)	Tipos con designación HS	HS.	No se permite
Muy severa	8	SO4" > 2,00	SO ₄ "> 10 000	0.45	31	V más puzolanas o escoria (Nota 6)	Tipos con designación HS más puzolanas o escoria (Nota 6)	HS y puzolanas o escoria (Nota 6)	No se permite
No aplicable	8	En contacto donde no se permea	En contacto con el agua donde no se requiere baja permeabilidad	N/A	17		Ninguno	oun	
 Requerida	P1	En contacto cor se requiere baja	En contacto con el agua donde se requiere baj a permeabilidad	050	28		Ninguno	oun	
						Contenid cloruro (Cl concreto,	Contenido máximo de iones de cloruro (CI-) soluble en agua en el concreto, porcentaje por peso de cemento	ones de gua en el r peso de	Requisitos
						Concreto	Concreto preesforzado	esforzado	
No aplicable	00	Concreto sec contra la	Concreto seco o protegido contra la humedad	N/A	17	1,00	90'0	3	Ninguno

						B	Requisitos mínimos adicionales	ales
Categoría Severidad	Severidad	Clase	Condición	Rel. a/mc máx. (Nota 9)	nín. (MPa)	ၓိ	Contenido de aire	Límites en los cementantes
						Contenid clonuro (Cl	Contenido máximo de iones de cloruro (CI-) soluble en agua en el concreto, porcentaje por peso de cemento	Requisitos relacionados
						Concreto	Concreto preesforzado	
	Moderada	5	Concreto expuesto a la humedad, pero no a una fuente externa de cloruros	0,50	17	0,30	90'0	Ninguno
C Protección del refuerzo para la corrosión	Severa	8	Concreto expuesto a la humedad y a una fuente externa de cioruros provenientes de productos químicos descongelantes, sal, agua salobre, agua de mar o salpicaduras del mismo origen	0,40	35	0,15	90'0	(Nota 8)

la corrosión de tendones de preesforzado no adheridos».

Nota 9: los limites máximos de la relación a/mc no se aplican al concreto de peso liviano.

Nota 1: el porcentaje en masa de sulfato en el suelo se debe determinar por medio de la norma ASTM C1580.

Nota 2: la concentración de sulfatos disueltos en agua en partes por millón, se debe determinar por medio de la norma ASTM D516 o la norma ASTM D4130. Nota 3: se permiten combinaciones atternativas de materiales cementantes diferentes a los mencionados en la Tabla 630 - 7, siempre y cuando sean ensayados para comprobar la resistencia a los suitatos y se cumplan los criterios de la Tabla 630 - 11. Nota 8: se deben cumplir los requisitos de la NSR referentes a «Protección de concreto para el refuerzo: Pernos con cabeza para refuerzo de corte», «Protección de concreto para el refuerzo: Ambientes corrosivos» y «Protección contra

Nota 4: para exposición al agua marina, son permitidos otros tipos de cemento Portiand, con contenidos de hasta diez por ciento (10 %) de aluminato tricálcico (C3A) si la relación a/mc no excede cero coma cuarenta (0,40). Nota 5: se permiten otros tipos de cemento como el tipo III o el tipo II o el tipo II o esposiciones clase S1 o S2, si el contenido de C3A es menor al ocho por ciento (8 %) o cinco por dento (5 %), respectivamente.

mejorar la resistencia a sulfatos, cuando se usa en concretos que contienen cemento tipo V. De manera alternativa, la cantidad de la fuente específica de Nota 7:el contenido de iones cloruro, solubles en agua, provenientes de los ingredientes -incluyendo el agua-, agregados, materiales cementantes y aditivos Nota 6: la cantidad de fuente específica de puzolana o escoria que se use, no debe ser inferior a la cantidad que haya sido determinada, por experiencia en puzoiana o escoria usada, no debe ser menor a la cantidad ensayada, según la NTC 3330 (ASTM C1012) y debe cumplir los requisitos de la Tabla 630 – 11.

de la mezcla de concreto, deben ser determinados según los requisitos de la NTC 4049 (ASTM C1218M), a edades que van de veintiocho días (28 d) a cuarenta y dos días (42 d). Como complemento de la Tabla 630-7, a continuación, se presentan requisitos adicionales para la exposición a congelamiento y deshielo en la Tabla 630-8. La tolerancia de aire incorporado debe ser de más o menos uno coma cinco por ciento (\pm 1,5%). Para concretos de f'c mayores de treinta y cinco megapascales (35 MPa), los valores de la Tabla 630-8 se pueden reducir hasta en uno por ciento (1%).

Tabla 630 - 8. Contenido total de aire para concreto expuesto a ciclos de congelamiento y deshielo

Tamaño máximo nominal	Contenido de aire (%)				
del agregado (mm)	Exposición Clase F1	Exposición Clases F2 y F3			
9,5	6,0	7,5			
12,5	5,5	7,0			
19,0	5,0	6,0			
25,0	4,5	6,0			
37,5	4,5	5,5			
50,0 (Nota)	4,0	5,0			
75,0 (Nota)	3,5	4,5			

Nota: estos contenidos de aire se aplican a la mezcla total. Al ensayar estos concretos, sin embargo, se retiran las particulas de agregado mayores de cuarenta milimetros (40 mm) sacándolas mediante tamizado y se determina el contenido de aire en la fracción tamizada (la tolerancia en el contenido de aire incorporado se aplica a ese valor). El contenido de aire de la mezcla total se calcula a partir del valor determinado en la fracción cribada que pasa el tamiz de 40 mm, indicado en la norma INV E-406/NTC 1032 (ASTM C231).

En la Tabla 630 — 9 se presenta el límite de materiales cementantes para concreto sometido a clase de exposición F3.

Tabla 630 — 9. Requisitos para concreto sometido a clase de exposición F3

Materiales cementantes	Porcentaje máximo sobre el total de materiales cementantes en peso (Nota 1)
Cenizas volantes u otras puzolanas que cumplen NTC 3493 (ASTM C618)	25
Escoria que cumple NTC 4018 (ASTM C989)	50
Humo de silice que cumple ASTM C1240	10

Materiales cementantes	Porcentaje máximo sobre el total de materiales cementantes en peso (Nota 1)
Total de cenizas volantes u otras puzolanas, escoria y humo de sílice	50 (Nota 2)
Total de cenizas volantes u otras puzolanas y humo de silice	35 (Nota 2)

Nota 1: el total de materiales cementantes también incluye cementos ASTM C150, ASTM C595, NTC 4578 (ASTM C845) y NTC 121. Los porcentajes máximos de esta tabla incluyen:

- Cenizas volantes u otras puzolanas presentes en cementos adicionados tipo IP, según la norma ASTM C595 o NTC 121.
- b. Escoria usada en la fabricación de cementos adicionados Tipo IS, según la norma ASTM C595 o NTC 121.
- c. Humo de silice, según la norma ASTM C1240, presente en cementos adicionados.

Nota 2: las cenizas volantes u otras puzolanas y el humo de silice no deben constituir más del veinticinco por ciento (25 %) y diez por ciento (10 %).

Para el caso de elementos estructurales expuestos a condiciones ambientales, tales como obras hidráulicas y estructuras en con-tacto permanente con el agua, los requisitos de durabilidad son aplicables, a excepción de la relación a/mc y f'c mínimo para las clases de exposición presentadas en la Tabla 630 — 10. Para el caso de estructuras que están expuestas a condiciones de exposición severas, con presencia de agentes químicos concentrados, se deben cumplir ciclos de humedecimiento y secado, y ciclos de congelamiento y deshielo del concreto saturado en algunas regiones. La clase de exposición Q se refiere a concretos expuestos a químicos corrosivos.

Tabla 630 — 10. Requisitos de concreto adicionales para estructuras ambientales

Clase de exposición	Relación a/mc máx.	f'c mín. (MPa)
F3	0,42	31
S0	0,45	28
S1	0,42	31
S2	0,40	35
83	0,40	35
P1	0,45	28
Q1	0,42	31

Adicionalmente, se deben cumplir los requisitos de juntas, protección contra la erosión y la protección contra químicos, presentados en la norma NSR para elementos ambientales.

630.2.6.1.2 Métodos por desempeño verificado

En caso de evaluar la durabilidad por el método de desempeño verificado, para exposiciones a sulfatos y al ion cloruro, el diseñador debe consignar en los documentos del proyecto los requisitos de diseño por desempeño veri-ficado para los diferentes tipos de exposición, con base en los siguientes criterios: penetrabilidad

al ion cloruro, en culombios (C), resistencia a sulfatos, en porcentaje (%) de expansión y permeabilidad al agua (NTC 4483). Se debe hacer la verificación experimental de los requisitos de durabilidad para el material colocado en obra.

No se establecen requisitos de contenido mínimo de cementante o de tipo de cemento, siempre y cuando se cumplan los requisitos de desempeño verificado y los requisitos de resistencia especificada para el concreto.

630.2.6.1.2.1 Exposición a sulfatos

Para la elaboración de concretos hidráulicos expuestos a sulfatos, provenientes del suelo, el agua freática y el agua marina, entre otras, se permite el uso de cualquier tipo de cemento que, solo o mezclado con un con-tenido mínimo de material suplementario, demuestre un valor máximo de expansión en relación con la severidad de la exposición, según el método de ensayo de la norma ASTM C1012 y lo establecido en la Tabla 630-11. No se permite la aprobación de la expansión a edades menores ni el uso de ecuaciones de proyección. En cuanto al diseño de la mezcla por exposición a sulfatos, se deben cumplir todos los requisitos limite dados en la Tabla 630-11.

Tabla 630 - 11. Requisitos del concreto con exposición de sulfatos

Tipo de exposición a sulfatos	Descripción	Sulfatos en el suelo, solubles en agua (SO, "), porcentaje (%) en peso	Sulfatos disueltos en agua (ppm)	Expansión según NTC 3330	Permeabilidad al agua según NTC 4483	f'c, mín. (MPa)	Uso de acelerantes basados en cloruros
S0	Sin requisitos	< 0,1	< 150	Sin requisitos	Media	28	Sin restricción
S1	Moderada	Entre 0,1 y 0,2	Entre 150 y 1 500	0,1 % a 6 meses	Media	31	Sin restricción
S2	Severa	Entre 0,2 y 2,0	Entre 1 500 y 10 000	0,5 % a 6 meses y 0,1 % a 1 año	Media	35	No se permite
S3	Muy severa	> 2,0	> 10 000	0,1 % a 18 meses	Baja	35	No se permite

Para la evaluación de la permeabilidad al agua se debe seguir lo indicado en la Tabla 630 — 12.

Tabla 630 - 12. Penetración de agua en el concreto según NTC 4483

	Unidades		Permeabilidad	
Tipo de ensayo		Baja	Media	Alta
Coeficiente de permeabilidad al agua	m/s	< 10-12	Entre 10 ⁻¹² y 10 ⁻¹⁰	> 10-10
Profundidad de penetración	mm	< 30	Entre 30 y 60	> 60

630.2.6.1.2.2 Penetración al ion cloruro

Para el caso de concreto que contenga acero de refuerzo, bien sea en barras, mallas, macrofibra, microfibra, entre otros, el diseño de la mezcla de concreto por desempeño verificado para la protección a la penetración del ion cloruro se puede realizar con base en la Tabla 630-13, de acuerdo con el tipo de exposición. El ensayo se debe realizar de acuerdo con la norma de ensayo ASTM C1202. Los requisitos de durabilidad por desempeño verificado para la corrosión del refuerzo requieren, sin embargo, el cumplimiento de los valores de resistencia a la compresión mínima y relación a/mc máxima de la Tabla 630-7.

Carga que pasa (C) ASTM C1202	Penetración de ion cloruro	Tipo de exposición del pavimento con elementos de acero (se excluyen los pasadores de transferencia)
> 4 000	Alta	Concretos sin exposición a cloruros.
Entre 2 000 y 4 000	Moderada	Concretos con exposición leve a cloruros en ambientes secos o interiores.
Entre 1 000 y 2 000	Baja	Concretos en exposición directa a agua marina, o freática con alto contenido de cloruros (severa).
Entre 100 y 1 000 Muy baja		Pavimentos reforzados y continuamente reforzados, expuestos de forma directa al agua con cloruros (severa). Pavimentos en puertos, puentes y viaductos.
< 100	Despreciable	Estructuras que si son dañadas generan grandes pérdidas económicas y/o ambientales irreparables.

Tabla 630 - 13. Requisitos de penetrabilidad a cloruros y tipo de exposición de concreto

630.2.6.1.3 Diseño para la mitigación de la reacción álcali-agregado

Sin importar el tipo de exposición del concreto, se debe evaluar y mitigar, de ser necesario, la reacción álcali-agregado según lo establecido en la norma ASTM C1778 y los demás requisitos del presente artículo.

630.2.6.1.3.1 Evaluación de la reacción álcali-carbonato

Si el agregado por utilizar en un proyecto proviene de una fuente que contiene material calcáreo, se debe caracterizar el potencial de reactividad álcali-carbonato con base en su composición química, particularmente el contenido de magnesio (MgO), cal (CaO) y alúmina (Al2O3). Se debe determinar si la relación CaO/MgO a Al2O3 del agregado se encuentra entre los rangos de composición de los agregados que son considerados potencialmente expansivos según se muestra en la Figura 630 - 1.

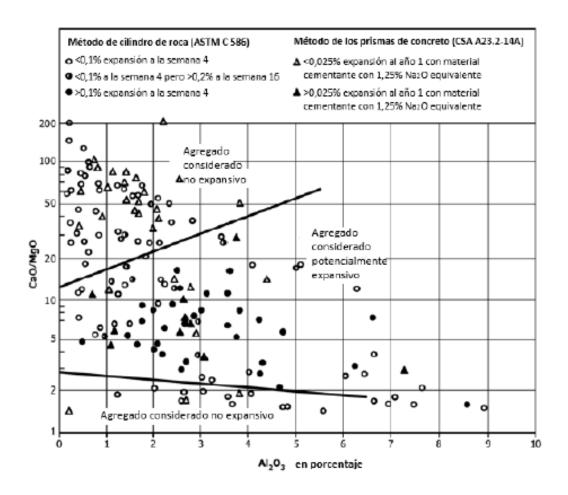


Figura 630 — 1. Franjas de composición para calificar el potencial de reacción álcali-carbonato de rocas calcáreas

Fuente: Figura adaptada de la norma ASTM C1778.

En cualquier caso, bien sea que el agregado se encuentre o no fuera de la franja de agre-gado potencialmente reactivo, el agregado calcáreo debe ser analizado para determinar su potencial, con el fin de desarrollar la reacción álcalisílice y si esta se presenta, se debe proceder a su mitigación.

Si el agregado calcáreo se encuentra en el rango considerado potencialmente expansivo para reacción álcali-carbonato, se debe ensayar utilizando el método de prismas de concreto por el método ASTM C1293 o por el método ASTM C1105, usando un contenido reducido de álcali (uno coma ocho kilogramos por metro cúbico (1,8 kg/m3) para minimizar el riesgo de una expansión perjudicial como resultado de la reacción álcali-sílice). Según los resultados obtenidos en estos ensayos, se puede utilizar o no el agregado para la elaboración de concreto con base en los siguientes criterios:

- Cuando se usa solamente el método de la norma ASTM C1293 y con este se determina una expansión mayor que cero coma cero cuatro por ciento (0,04 %) a doce (12) meses, se debe realizar un análisis petrográfico para determinar si en el concreto hubo reacción álcalicarbonato y reacción álcali-sílice. Si el análisis petrográfico muestra que ocurrió reacción álcali-carbonato, solo o en combinación con reacción álcali-sílice, el agregado no puede ser utilizado para hacer concreto. Solo se puede usar el agregado si se implementa una explotación selectiva de la fuente, que demuestre que el nuevo agregado obtenido cumple los requisitos de expansión máxima por reacción álcali-carbonato.
- Cuando se usa el método ASTM C1105, el procedimiento se debe modificar de tal forma que el contenido de álcalis en el ensayo se mantenga por debajo de uno coma ocho kilogramos por metro cúbico (1,8 kg/m3), para evitar que se genere reacción álcali-sílice. Si el resultado de expansión por este método es cero coma cero veinticinco por ciento (0,025 %) o mayor a los seis (6) meses, o cero coma

cero tres por ciento (0,03 %) o mayor a los doce (12) meses, el agregado se considera reactivo y no se puede utilizar para hacer concreto. Los agregados calcáreos que muestren valores de expansión menores pueden ser utilizados para la elaboración de concreto. Aun si cumple este requisito, se debe evaluar el potencial de expansión por reacción álcali-sílice por el método ASTM C1260 o ASTM C1293, y de ser necesario, realizar la mitigación.

630.2.6.1.3.2 Evaluación de la reacción álcali-sílice

En el caso de la reacción álcali-sílice, se puede realizar la inspección petrográfica de los agre-gados al cumplir la norma ASTM C295, la cual sirve para determinar la presencia de sílice amorfa, sílice microcristalina, policristalina o criptocristalina.

La evaluación petrográfica, por sí sola, no se debe tomar como un indicativo de la reactividad de los agregados, la cual se debe analizar solamente por desempeño verificado.

La evaluación del potencial de expansión por reacción álcali-sílice se debe realizar según lo establecido en la NTC 6222 (ASTM C1260) (método de las barras de mortero) o, alternativamente, por la norma ASTM C1293 (método de los prismas de concreto). Para estas pruebas diagnósticas, solo se debe usar el cemento estándar (Portland Tipo I) definido por dichas normas. No se puede usar el cemento que se va a emplear en la obra. La calificación de reactividad de los agregados se realiza con base en los parámetros que se dan en la Tabla 630-14.

Tabla 630 — 14. Calificación de reactividad de los agregados

Norma	Material involucrado	Proceso	Requisito	Calificación	Valor
	Agregados finos y			Agregado inocuo	< 0,1 %
ASTM C1260	gruesos. Solo se ensaya el agregado fino si ambos	Diagnóstico de reactividad	Expansión en barras de mortero	Agregado potencialmente reactivo	≥0,1 %
	son de la misma fuente.			Agregado reactivo	≥ 0,2 %
ASTM C1567	Agregados finos y gruesos. Solo se ensaya el agregado fino si ambos son de la misma fuente. Cementante suplementario.	Mitigación de la reactividad	Expansión en barras de mortero	Mezcla mitigada	< 0,1 % a 16 días, si la curva de expansión tiene tendencia asintótica horizontal a los 16 días
ASTM C1293	Agregados finos y gruesos que se usan en la mezcla.	Diagnóstico de la reactividad	Expansión de los prismas de concreto	Potencialmente no reactivo	< 0,04 % a 1 año
				Potencialmente dañino	≥ 0,04 % a 1 año
	Agregados finos y gruesos, y cementante suplementario que se van a usar en la mezcla.	Mitigación de la reactividad	Expansión de los prismas de concreto	Mezcla mitigada	< 0,04 % a 2 años (Nota)

Nota: si no se cuenta con datos, se trabaja solo con las normas ASTM C1260 y ASTM C1567, como lo establece la norma ASTM C1778.

La mitigación de la reacción álcali-sílice mediante la aplicación de la norma ASTM C1567 o ASTM C1293, solo se puede realizar usando el cemento especificado en la norma de ensayo. No se admite el diseño de la mitigación usando el cemento de la obra.

El diseño de la mitigación se puede realizar mediante el método por desempeño verificado o el método prescriptivo, ambos descritos en la norma ASTM C1778 secciones 7, 8 y 9.

Cuando se emplee el método ASTM C1567 y se utilice, para la elaboración del concreto, agregado de diferentes fuentes, se debe mitigar la reacción álcali-sílice, con base en el material más reactivo. Además, para la mitigación de la reacción álcali-sílice se usan los criterios de diseño por el método prescriptivo o por el método de desempeño verificado que son detallados en la guia ASTM C1778.

630.2.6.1.3.3 Mitigación de reacción álcali-sílice por método prescriptivo

Para aplicar el criterio de diseño prescriptivo del método ASTM C1778 se deben tener en cuenta los siguientes requisitos:

- Emplear los valores de expansión por reactividad álcali-sílice de los agregados, según los resultados de la NTC 6222 (ASTM C1260) o ASTM C1293, o ambas.
- Determinar la ocurrencia de la reacción álcali-agregado en función de la exposición.
- Determinar la clase de severidad de las consecuencias en los casos que ocurra reacción álcali-sílice.
- Determinar el nivel de prevención requerido, con base en los resultados anteriores.
- Especificar con los requisitos más restrictivos.

630.2.6.1.3.4 Mitigación de reacción álcali-sílice por el método de desempeño verificado

En el caso del diseño de la mitigación de la reacción álcali-sílice por el método de desempeño verificado, se deben conocer los valores de expansión de los agregados por la NTC 6222 (ASTM C1260) o ASTM C1293 o ambas cuando estén disponibles. Es decir, con los resultados de los ensayos se determina la reactividad del material y se procede a diseñar directamente la mitigación. Uno de los métodos de mitigación es emplear material cementante suplementario, determinando la cantidad por los métodos de la ASTM C1567 o ASTM C1293.

630.2.6.2 Clases de concreto

Para el caso de puentes, estructuras auxiliares de puentes, estructuras hidráulicas de la infraestructura vial y muros de contención se debe definir la clase de concreto por usar, de acuerdo con la clasificación en la Norma Colombiana de Diseño de Puentes (CCP).

Una vez determinada la clase del concreto, se debe realizar el diseño de mezcla cumpliendo con los requisitos por clase de concreto presentados en el CCP. Para el caso la de relación a/mc, contenido de aire y resistencia a la compresión a los veintiocho días (28 d), se deben cumplir los requisitos límite del CCP y los requisitos de los numerales 630.2.6.1 y 630.2.6.3, es decir, se debe diseñar la mezcla con los parámetros límite más conservadores entre los establecidos por clase de concreto, durabilidad y resistencia.

630.2.6.3 Resistencia

También, se deben cumplir los siguientes requisitos para la resistencia:

• Concreto ciclópeo: la resistencia no debe ser menor de diecisiete megapascales (17 MPa) a los veintiocho días (28 d).

- Concreto simple: la resistencia no debe ser menor de diecisiete megapascales (17 MPa) a los veintiocho días (28 d).
- Concreto reforzado: la resistencia no debe ser menor de veintiún megapascales (21 MPa) a los veintiocho días (28 d).
- Concreto pretensado y postensado: la resistencia no debe ser menor de treinta y dos megapascales (32 MPa) a los veintiocho días (28 d).

Para el caso de concreto liviano, los límites máximos de la relación a/mc hallados en el numeral 630.2.6.1 no aplican.

Por otra parte, el valor de resistencia a la compresión del concreto liviano no debe ser mayor de treinta y cinco megapascales (35 MPa), es decir, elementos que requieran concreto con una resistencia a la compresión mayor de treinta y cinco megapascales (35 MPa) no se pueden construir con este tipo de concreto, a menos que se demuestre experimentalmente que, elementos estructurales elaborados con el concreto liviano a usar en obra proporcionan una resistencia y tenacidad iguales o mayores que las de elementos comparables hechos con concreto de peso normal de la misma resistencia.

630.3 Equipo

Es responsabilidad del constructor disponer de los equipos y elementos para el suministro de los materiales, fabricación, transporte, colocación, vibrado, curado y acabado del concreto estructural. También, equipos y elementos necesarios para la ejecución de juntas, equipos para limpieza, reparaciones, etc.

El constructor debe garantizar la calibración periódica de los equipos, de acuerdo con el plan de mantenimiento y calibración de estos, fijado en el plan de calidad del proyecto. Las calibraciones deben ser realizadas por laboratorios de calibración que cuenten con la acreditación por parte del Organismo Nacional de Acreditación de Colombia (ONAC) para la unidad de medida por verificar, garantizando que las mediciones realizadas por la empresa sean trazables al Sistema Internacional de Unidades (SI).

A continuación, se presentan los requisitos de los principales equipos y herramientas requeridos para la elaboración de concretos y la construcción de estructuras con este material.

630.3.1 Equipo para la elaboración de agregados

Para la producción de los agregados pétreos se requieren equipos para su explotación, cargue, transporte y proceso. La unidad de proceso consiste en una

unidad clasifica-dora y una planta de trituración provista de trituradora primaria, secundaria y terciaria, siempre que esta última se requiera, así como un equipo de lavado. La planta debe estar provista de los filtros y demás accesorios necesarios para controlar la contaminación ambiental, de acuerdo con la reglamentación vigente.

630.3.2 Producción de la mezcla de concreto

La producción del concreto debe cumplir los lineamientos establecidos en la NTC 3318 (ASTM C94), tanto para el concreto producido in situ como para el concreto producido por un proveedor externo, en planta externa.

Si se prevé la incorporación de aditivos a la mezcla, la central debe dosificarlos con precisión suficiente. Los aditivos en polvo se deben dosificar en masa y los aditivos en forma de líquido o de pasta en masa o en volumen, con una precisión no inferior al tres por ciento (± 3 %) de la cantidad especificada de producto.

El temporizador del amasado y el de la descarga del mezclador deben estar protegidos de tal forma que, durante el funcionamiento del mezclador, no se pueda producir la descarga hasta que haya transcurrido el tiempo de amasado previsto.

630.3.2.1 Mezcla en el sitio

Se permite el empleo de mezcladoras estacionarias en el lugar de la obra, previa aprobación del interventor, cuya capacidad no debe exceder de tres metros cúbicos (3 m3).

630.3.3 Equipo para el transporte del concreto al sitio de las obras

La utilización de cualquier sistema de transporte o de conducción del concreto debe contar con la aprobación del interventor. Dicha aprobación no se debe considerar definitiva por el constructor y la condición del uso del sistema de conducción o transporte se debe suspender inmediatamente, si el asentamiento o flujo de la mezcla (según sea el tipo de consistencia del concreto) excede los límites especificados o si la segregación de esta es excesiva. Se debe garantizar la homogeneidad de la mezcla mediante la prueba de uniformidad del concreto, de acuerdo con el procedimiento definido en el apéndice A de la NTC 3318 (ASTM C94).

Se debe garantizar la homogeneidad de la mezcla de concreto. Para esto es necesario que el transporte cumpla el horario programado considerando los tiempos de fraquado. De lo contrario, se debe hacer uso de aditivos retardantes de fraquado.

630.3.3.1 Transporte del concreto en camiones mezcladores

El transporte del concreto a la obra se rea-liza en camiones mezcladores o agitadores provistos de tambor giratorio cerrado con paletas internas, los cuales están equipados con cuentarrevoluciones. Deben ser capaces de proporcionar mezclas homogéneas y descargar su contenido sin que se produzcan segregaciones.

630.3.3.2 Transporte del concreto en volquetas

Para distancias cortas se emplean camiones del tipo volqueta, sin elementos de agitación, de forma que se impida toda segregación, exudación, evaporación de agua o intrusión de cuerpos extraños. Su caja debe ser lisa y estanca, y estar limpia, para lo cual se debe disponer de un equipo adecuado. El sistema de descarga puede ser basculante o por medio de bandas o tornillos. Estos camiones deben estar siempre provistos de una lona o cobertor para proteger el concreto fresco durante su transporte, evitando la excesiva evaporación del agua o la intrusión de elementos extraños.

Se debe disponer de los equipos necesarios para la limpieza de los elementos de transporte, antes de recibir una nueva carga de concreto.

630.3.3.3 Transporte del concreto en otros tipos de equipos

Se pueden utilizar otros vehículos de transporte de concreto tales como camiones agitadores, buggies, entre otros, si el concreto no pierde sus propiedades y uniformidad.

Los diferentes tipos de equipo de transporte deben ser seleccionados, de acuerdo con la tecnología utilizada para la construcción, la logística y el entorno del proyecto y el tipo de concreto, previa aprobación del interventor.

El constructor debe tener en cuenta y cumplir todas las disposiciones vigentes sobr**e** tránsito automotor y ambiente, emanadas por las autoridades competentes, en especial el Ministerio de Transporte y el Ministerio de Ambiente, Vivienda y Desarrollo Territorial.

Independiente del sistema de transporte escogido, el interventor tiene la autoridad de rechazar o aceptar la mezcla antes de su colocación. Debe verificar que las propiedades y la uniformidad del concreto no se modificaron durante el transporte.

630.3.4 Equipos de puesta en obra del concreto

El constructor debe disponer de los medios de colocación del concreto que permitan una buena regulación de la cantidad de mezcla depositada, para evitar salpicaduras, segregación y choques contra las formaletas o el refuerzo.

630.3.4.1 Formaleta y obra falsa

El constructor debe suministrar e instalar todas las formaletas necesarias para confinar y dar forma al concreto, de acuerdo con las líneas mostradas en los documentos del proyecto. Las formaletas se deben poder ensamblar firmemente y tener la resistencia suficiente para contener la mezcla de concreto, sin que se formen combas entre los soportes u otras desviaciones de las líneas y contornos que muestran los documentos del proyecto, ni se pueda escapar el mortero.

La obra falsa o armazones provisionales deben ser construidos sobre cimientos suficiente-mente resistentes para soportar las cargas sin asentamientos perjudiciales. Toda la obra falsa debe ser diseñada y construida con la solidez necesaria que le permita soportar, sin sufrir deformación apreciable, las cargas a que puede estar sometida, las cuales deben incluir, además del peso de la superestructura, las correspondientes a las formaletas, arriostramientos, carriles de circulación y otras cargas que le puedan ser impuestas durante la construcción. La obra falsa debe ser convenientemente apuntalada y amarrada, para prevenir distorsiones y movimientos que pue-dan producir vibraciones y deformaciones en la formaleta de la superestructura.

630.3.4.2 Vibradores

Los vibradores para la compactación del concreto deben ser de tipo interno simple y tener una intensidad suficiente para producir la plasticidad y la adecuada consolidación del concreto, pero sin llegar a causar la segregación de los materiales.

Para fundiciones delgadas, donde las formaletas estén especialmente diseñadas para resistir la vibración, se deben emplear vibra-dores externos de formaleta, reglas y mesas vibratorias, entre otras.

En la selección del equipo más apropiado para cada elemento estructural se recomienda consultar el documento ACI 309R, Guía para la consolidación del concreto.

630.4 Ejecución de los trabajos

630.4.1 Explotación de materiales y elaboración de agregados

Rige lo establecido en el numeral 105.13.3 del artículo 105, Desarrollo de los trabajos.

630.4.2 Estudio de la mezcla y obtención de la fórmula de trabajo

La dosificación del concreto determina las proporciones en que se deben combinar los diferentes materiales componentes, como son: agregados, material cementante, adi-ciones suplementarias, agua, aditivos y eventualmente adiciones complementarias, de modo que se obtenga un concreto que cumpla la resistencia, la consistencia, la manejabilidad, la durabilidad y las demás exi-gencias requeridas por las especificaciones particulares de los documentos del proyecto y las presentes especificaciones.

Con suficiente antelación al inicio de los tra-bajos, el constructor debe suministrar al interventor, para su verificación, muestras representativas de los agregados, material cementante, adiciones suplementarias, agua, aditivos y, eventualmente, adiciones complementarias por utilizar, avaladas por los resultados de ensayos de laboratorio que garanticen la conveniencia de emplearlos en el diseño de la mezcla.

Una vez el interventor realice las comprobaciones que considere necesarias y dé su aprobación a los materiales con base en el cumplimiento de los requisitos de la presente especificación, el constructor debe diseñar la mezcla y debe definir una fórmula de trabajo, la cual debe someter a consideración del interventor. Dicha fórmula señala:

- El tipo y la marca de cemento.
- El tipo y la marca de adiciones suplementarias.
- Las proporciones en que se deben mezclar los agregados disponibles y la gradación media a que da lugar dicha mezcla, por los tamices correspondientes a la granulometría aceptada, así como la franja de tolerancia dentro de la cual es válida la fórmula propuesta.
- Las dosificaciones de material cementante, agregados grueso y fino, adiciones suplementarias, aditivos y eventualmente adiciones complementarias, se deben hacer en peso por volumen unitario de concreto (usualmente un metro cúbico de concreto, o fracción de este). La cantidad de agua y aditivos líquidos se puede dar por peso o por volumen. Cuando se contabilice el cemento por bolsas, la dosificación de la bachada por producir debe corresponder a un número entero de bolsas (aproximado al entero superior).
- El módulo de finura del agregado fino.
- El contenido de aire (si se ha especificado).
- La resistencia a compresión de la mezcla a veintiocho días (28 d) de curado, y las edades adicionales que se especifiquen en el concreto a usar, la cual se mide según la norma INV E-410/NTC 673.
- La consistencia del concreto debe estar dentro de los límites indicados en los documentos del proyecto para cada tipo de concreto. Si la consistencia se mide

según el ensayo de asentamiento, se debe utilizar la norma de ensayo INV E-404/NTC 396 (aplicable para mezclas entre los trece y los doscientos treinta milímetros (13 mm – 230 mm) de asentamiento). Si la consistencia se mide según el ensayo de flujo libre, se debe utilizar la NTC 5222 (aplicable para mezclas de más de dos-cientos treinta milímetros (230 mm)). Se pueden utilizar medios electrónicos para medir la consistencia del concreto desde que previamente se realicen correlaciones con los ensayos de las normas INV E-404/NTC 396 o NTC 5222, la que sea aplicable, y con aprobación del interventor. Para la aprobación de cualquier medio electrónico, el interventor puede solicitar los datos experimentales que dan sustento a las correlaciones, sin perjuicio de los datos que sean presentados por parte del fabricante del equipo.

Cumplimiento de la ACI 308, Guía para el curado del concreto.

El constructor debe determinar la consistencia de cada concreto teniendo en cuenta las condiciones específicas del proyecto (sistema de colocación, condiciones ambientales, tipo de estructura, materiales componentes, entre otras) y este debe ser aprobado por el interventor.

La fórmula de trabajo se debe reconsiderar cada vez que varíe alguno de los siguientes factores:

- El tipo o clase del material cementante.
- El tipo, absorción y tamaño máximo del agregado grueso.
- El módulo de finura del agregado fino en más de dos décimas (0,2).
- La gradación del agregado combinado en una magnitud tal, que ella se salga de la tolerancia fijada.
- La naturaleza y la proporción de los aditivos.
- El método de puesta en obra del concreto.
- La procedencia del agua.
- Las tolerancias granulométricas indicadas en la Tabla 630 18.

En caso de variar cualquier otro parámetro, el interventor puede exigir la modificación de la fórmula de trabajo para que esta se ajuste a la variación de los parámetros realizada.

El constructor debe considerar que el concreto sea dosificado y elaborado para asegurar una resistencia a la compresión promedio suficientemente superior a la especificada en los documentos del proyecto, según el tipo de concreto, de manera que se minimice la frecuencia de los resultados de pruebas por debajo del valor especificado. La dosificación también debe estar en función de los requisitos mínimos de durabilidad. Se deben cumplir los lineamientos de dosificación del concreto de la

NSR. Con este fin, el constructor debe tener en cuenta que, la magnitud en que el promedio de resistencia de la mezcla deba exceder la resistencia especificada de diseño, depende de la desviación estándar de la resistencia durante la etapa de producción y de la precisión con la que dicho valor pueda ser estimado a partir de datos históricos sobre mezclas iguales o similares.

Para casos en que los valores se encuentren por debajo de la especificación, se debe cumplir lo especificado en la NSR: «El nivel de resistencia de una clase determinada de concreto se considera satisfactorio si cumple con los dos siguientes requisitos:

- c) Cada promedio aritmético de tres ensayos de resistencia consecutivos es igual o superior a f'c.
- d) Ningún resultado del ensayo de resistencia es menor que f´c por más de 3,5 MPa cuando f´c es 35 MPa o menor; o por más de 0,10 * f´c cuando f´c es mayor a 35 MPa».

Al efectuar las mezclas de prueba en el laboratorio para el diseño de la mezcla, las muestras para los ensayos de resistencia deben ser elaboradas y curadas de acuerdo con la norma INV E-402/NTC 1377 y ensayadas según la norma de ensayo INV E-410/NTC 673. Se deben elaborar curvas que muestren la variación de la resistencia a la compresión a veintiocho días (28 d) (o a la edad definida para el tipo de concreto) en función de la relación a/mc y del contenido de material cementante. Estas curvas se deben basar en no menos de tres (3) puntos y preferiblemente cinco (5) puntos, que representen mezclas de prueba que den lugar a resistencias a la compresión por encima y por debajo de la requerida. Cada punto debe representar el promedio de, por lo menos, dos (2) cilindros estandarizados de ciento cincuenta milímetros (150 mm) de diámetro por trescientos milímetros (300 mm) de altura o tres (3) cilindros estandarizados de cien milímetros (100 mm) de diámetro por doscientos milímetros (200 mm) de altura, ensayados a veintiocho días (28 d) (o a la edad definida para el tipo de concreto).

Los valores de la relación a/mc máxima y el contenido mínimo de material cementante admisibles por resistencia para el concreto a emplear en la estructura, son los que permiten obtener una resistencia promedio por encima de la resistencia de diseño del elemento y cumplir los requisitos de durabilidad y clase de concreto.

En todos los casos, la relación a/mc y el con-tenido de material cementante deben cumplir los valores máximo y mínimo, respectiva-mente, permitidos por las consideraciones de durabilidad y clase de concreto correspondientes a los definidos en los documentos del proyecto.

La aprobación que dé el interventor al diseño de la mezcla no implica necesariamente la aceptación posterior de las obras de concreto que se construyan con base en dicho diseño, ni exime al constructor de su responsabilidad de cumplir todos los requisitos de los documentos del proyecto. La aceptación de las obras para fines de pago depende de su correcta ejecución, el cumplimiento de los requisitos de durabilidad y clase de concreto, y de la obtención de la resistencia a la compresión mínima especificada para el respectivo tipo de concreto, resistencia que debe ser comprobada con base en las mezclas realmente incorporadas en tales obras.

No se permite ningún cambio al diseño de la mezcla, sin aprobación del interventor.

El diseño debe llevar una copia de todos los resultados de ensayo, incluyendo las fechas de las pruebas, una lista completa de los materiales, indicando tipo, fuente y características especificadas, tipo y resultados de las pruebas físicas y químicas sobre agrega-dos, material cementante, adiciones, agua y aditivos. También, debe incluir el módulo de finura de la arena y el contenido de aire en la mezcla. La producción industrial de la mezcla no puede comenzar hasta que el interventor apruebe el informe de diseño por escrito.

Los laboratorios en donde se realicen los ensayos necesarios para el desarrollo de la fórmula de trabajo de la mezcla deben ser empresas legalmente constituidas que cuenten con experiencia y/o trayectoria en ejecución de pruebas y ensayos de control de calidad de materiales, que puedan demostrar apropiadamente la competencia de su personal de laboratorio y cuyos informes de resultados informados contengan la aprobación y la autorización para su emisión, mediante la firma del responsable técnico facultado para ello. El laboratorio debe contar con todo el equipamiento principal y auxiliar necesario para el correcto desempeño de sus actividades y asegurar que estos cuenten con la exactitud y la precisión adecuadas para lograr resultados válidos. El laboratorio debe contar con un programa de calibración de sus equipos y se debe asegurar de que los resultados de la medición sean trazables al SI mediante alguna de las siguientes alternativas:

- La calibración de los equipos proporcionados por un laboratorio de metrología acreditado por ONAC.
- La comparación directa o indirecta a patrones nacionales o internacionales que cuenten con unidades del SI.
- Los valores certificados de materiales de referencia (MRC) proporcionados por productores competentes con trazabilidad metrológica establecida al SI.

El constructor es el responsable de garantizar que todos los ensayos necesarios se realicen. Los informes deben ser entregados rutinaria-mente al interventor, el profesional a cargo del diseño, a los proveedores de material y a la autoridad competente que verifique el cumplimiento de la calidad o que tome acciones correctivas.

630.4.3 Almacenamiento de materiales

Los agregados, el material cementante, las adiciones suplementarias, los aditivos y las adiciones complementarias se deben almacenar, de tal forma que se prevenga su deterioro o contaminación. Cualquier material que se haya deteriorado o contaminado no se debe usar para la elaboración del concreto. Para prevenir esta situación, los materiales se deben almacenar de acuerdo con las siguientes indicaciones.

630.4.3.1 Almacenamiento de los agregados pétreos

Los agregados se deben producir o suministrar en fracciones granulométricas diferenciadas, que se deben acopiar y manejar por separado, hasta su introducción en las tolvas de agregados. Cada fracción debe ser suficientemente homogénea y se debe poder acopiar y manejar sin peligro de segregación, atendiendo las precauciones que se detallan a continuación:

- El agregado grueso no debe permanecer almacenado durante un tiempo prolongado porque los finos de este tienden a asentarse y acumularse. Sin embargo, cuando el almacenamiento sea necesario, el método de almacenamiento utilizado debe minimizar la segregación, rotura de agregados, excesiva variación en la granulometría y contaminación.
- Las existencias se deben acumular en capas horizontales o de pendiente suave, garantizando la homogenización del mate-rial en acopio.
- Se deben disponer sistemas de drenaje apropiados. Para tal efecto, los patios de almacenamiento deben estar en pen-diente, de tal manera que se garantice la captación, conducción y evacuación del agua, con el objeto de que los agregados finos y gruesos mantengan una humedad homogénea.
- Los camiones, cargadores u otros equipos no deben ser operados sobre los acopios porque, además de fracturar el agregado, lo contaminan.
- Se debe proteger el agregado seco y fino ante la posibilidad de ser separado por el viento, mediante el uso de lonas o rompe-vientos.

- Se debe prevenir la contaminación cruzada entre los diferentes tamaños de agregado mediante muros o amplios espacios entre acopios.
- El almacenamiento de los agregados se puede realizar sobre patios pavimentados construidos para este fin. Sin embargo, si los acopios se disponen sobre el terreno natural, no se deben utilizar los quince centímetros (15 cm) inferiores de los mismos.
- En lo posible, los acopios deben ser cubiertos. En caso, de no contar con cubiertas, se deben implementar todos los procedimientos y los controles que garanticen el producto.
- Cuando se detecten anomalías en el suministro de los agregados, ellos se deben acopiar por separado hasta confirmar su aceptación. Esta misma medida se debe aplicar cuando se autorice el cambio de procedencia de un agregado. No se deben emplear métodos de transporte, desde los acopios hasta las tolvas de la central, que pudieran causar segregación, degradación o mezcla de fracciones de distintos tamaños.
- El sistema de abastecimiento de agrega-dos se debe programar de manera tal que la cantidad de agregado sea suficiente para cumplir la programación prevista en el proyecto.

Para todo lo anterior, se sugiere consultar el documento ACI 304R, Guía para medir, mezclar, transportar y colocar concreto; que contiene las prácticas recomendables de almacenamiento y manejo de agregados.

630.4.3.2 Almacenamiento del material cementante y adiciones suplementarias

El material cementante en sacos se debe almacenar en sitios secos y aislados del suelo (sobre estibas) y de muros, en acopios de no más de siete metros (7 m) de altura.

Si el material cementante se suministra a granel, se debe almacenar en sitios aislados de la humedad. La capacidad mínima de almacena-miento debe ser la suficiente para el consumo de dos (2) jornadas de producción normal.

Todo cemento y adición suplementaria que tenga más de dos (2) meses de almacena-miento en sacos, o tres (3) meses en silos, debe ser evaluado y avalado por el interventor, para verificar si aún es susceptible de utilización.

630.4.3.3 Almacenamiento de aditivos y adiciones complementarias

Los aditivos y las adiciones complementarias se deben proteger convenientemente de la intemperie y de toda contaminación. Los productos que vengan en sacos se deben almacenar bajo cubierta y conservando las mismas precauciones que en el caso del almacenamiento del material cementante y las adiciones suplementarias. Los aditivos y las adiciones complementarias suministra-dos en forma líquida se deben almacenar en recipientes estancos. Para todo caso, los proveedores de los productos deben suministrar dentro de la ficha técnica o por separado, en documento escrito, las recomendaciones para el almacenamiento de los productos, de tal manera que no se afecte su calidad. Se deben seguir todas las disposiciones y recomendaciones consignadas en la ficha técnica del producto suministrada por el fabricante.

630.4.4 Preparación de la zona de los trabajos

La excavación necesaria para las cimentaciones de las estructuras de concreto y su preparación para la cimentación, incluyendo su limpieza y apuntalamiento, cuando sea necesario, se debe efectuar conforme se estipula en el artículo 600, Excavaciones varias. Cualquier deterioro ocurrido después de ter-minada la excavación, debe ser subsanado por el constructor, sin costo adicional para INVÍAS, utilizando procedimientos aprobados por el interventor.

630.4.5 Instalación de la formaleta y obra falsa

Todas las formaletas para confinar y soportar la mezcla de concreto mientras se endurece, deben ser diseñadas por el constructor y aprobadas por el interventor, de tal manera que permitan la colocación y la consolidación adecuadas de la mezcla en su posición final y su fácil inspección. Así mismo, deben ser suficientemente herméticas para impedir pérdidas del mortero de la mezcla.

La aprobación del diseño de las formaletas por parte del interventor no exime al constructor de su responsabilidad respecto de la seguridad, la calidad del trabajo y el cumplimiento de todas las especificaciones.

Las formaletas se deben ensamblar firme-mente y deben tener la resistencia suficiente para contener la mezcla de concreto sin deformaciones y manteniendo las tolerancias propias de la norma vigente (por ejemplo: reglamento NSR vigente, código de puentes u otros.

Antes de iniciar la colocación del concreto se deben limpiar de impurezas, incrustaciones de mortero y cualquier otro material extraño. Su superficie interna se debe cubrir con productos antiadherentes, que no manchen la superficie del concreto, que impida la absorción de humedad por parte del encofrado y no sea absorbido por el concreto. La colocación del desmoldante en el encofrado se debe realizar siguiendo las indicaciones del proveedor que deben ser suministradas en un

documento escrito. Se debe aplicar el desmoldante antes de colocar el acero y no se debe permitir que este entre en contacto con el acero.

Las abrazaderas que se utilicen para sostener las formaletas y que queden embebidas en el concreto, deben ser pernos de acero provistos de rosca, tuercas y acoples adecuados, que permitan retirar los extremos exteriores, sin producir daños en las superficies del concreto. Todos los huecos resultantes del retiro de las abrazaderas se deben llenar con un mortero de consistencia seca.

No se puede colocar concreto dentro de las formaletas si estas no han sido inspeccionadas y aprobadas por el interventor. No se debe mover la cimbra o hacer alguna modificación cuando el concreto haya alcanzado su fraguado inicial.

Las formaletas se pueden remover parcial o totalmente, tan pronto como la mezcla haya adquirido la resistencia suficiente, comprobada mediante ensayos, para sostener su propio peso y el peso de cualquier otra carga.

De acuerdo con los lineamientos del diseñador establecidos en los documentos del proyecto, el constructor debe presentar al interventor un procedimiento apropiado para el retiro de la obra falsa, de manera tal, que la estructura vaya tomando las cargas en la secuencia indicada por el diseñador de la estructura.

Toda obra falsa o cimbra para la construcción de puentes u obras similares debe ser dise-ñada por el constructor, quien debe someter el diseño a consideración del interventor. Para la aprobación de la obra falsa o cimbra se deben entregar al interventor las memorias de cálculo y los planos de taller debidamente avalados por el profesional facultado para el diseño de estos elementos. En el diseño se deben tener en cuenta las cargas muertas y vivas a las que puede estar sometida la obra falsa durante y después de la colocación del concreto. Las eventuales deflexiones de la obra falsa, debido a las cargas, se deben compensar mediante contraflechas, de tal forma que la estructura terminada se ajuste a los niveles indicados en los documentos del proyecto.

En la construcción de cimbras para arcos, se deben proveer los medios adecuados que permitan un descenso gradual de los centros hasta obtener el autosoporte del arco.

630.4.6 Elaboración de la mezcla

Cuando la mezcla se produce en una planta central, sobre camiones mezcladores o por una combinación de estos procedimientos, el trabajo se debe efectuar de acuerdo con los requisitos aplicables de la NTC 3318 (ASTM C94).

630.4.6.1 Mezclado manual para concretos no estructurales

La mezcla manual solo se puede efectuar, previa aprobación del interventor, para estructuras pequeñas no estructurales que requieran concreto de resistencia a la compresión no superior a catorce megapascales (14 MPa) a los veintiocho días (28 d), o en casos de emergencia que requieran un reducido volumen de concreto. En tal caso se debe colocar un veinte por ciento (20 %) adicional de cemento, en peso, sobre el requerido según el diseño de la mezcla.

El mezclado manual se debe hacer en bachadas no mayores de cero coma veinticinco metros cúbicos (0,25 m3), sobre una superficie lisa e impermeable.

Las cargas mezcladas a mano no se pueden emplear para concreto colocado debajo del agua, ni concreto estructural.

630.4.6.2 Reablandamiento del concreto

Solo se permite la adición de agua a la mezcla en estado plástico, en el sitio de obra, hasta recuperar la consistencia de diseño de la mezcla, siempre y cuando se realice antes de que se haya presentado el tiempo de fraguado inicial del concreto y que no se exceda por ningún motivo la relación a/mc de diseño, determinada previamente, verificada por medio de mezclas de prueba y aprobada por el interventor.

En caso de adicionar agua en el sitio de obra, se debe demostrar y registrar de forma documental que la relación a/mc no excede el valor de diseño y que este procedimiento se realizó antes de que se haya presentado el tiempo de fraguado inicial del concreto. Todo lo anterior también debe ser corroborado por el interventor.

También se permite la adición de aditivos súper reductores, los cuales deben ser con-templados desde el diseño inicial.

630.4.7 Descarga, transporte y entrega de la mezcla

El concreto, al ser descargado de mezclado-ras estacionarias, debe tener la consistencia, la trabajabilidad y la uniformidad requeridas para la obra.

Cuando se empleen camiones mezcladores o agitadores, la descarga de la mezcla, el transporte, la entrega y la colocación del concreto deben ser completados en un tiempo máximo de uno coma cinco horas (1,5 h), desde el momento en que el material cementante se añade a los agregados, salvo que el interventor fije un plazo diferente según las condiciones climáticas, el uso de aditivos o las características del equipo de transporte y que así esté definido desde el diseño de la mezcla.

El concreto descargado de camiones mezcladores o de camiones agitadores debe ser entregado con la consistencia, la trabajabilidad y la uniformidad requeridas para la obra. La velocidad de descarga del concreto premezclado debe ser controlada por la velocidad de rotación del tambor, en la dirección de la descarga, con la canaleta o compuerta de descarga completamente abierta. Si es necesario agregar agua adicional a la mezcla para alcanzar o mantener el asentamiento especificado, sin exceder la relación a/mc requerida, se debe mezclar nuevamente el contenido del tambor, por un mínimo de veinte (20) revoluciones a la velocidad de mezclado, antes de proceder a la descarga del concreto. En caso de adicionar agua en el sitio de la obra, se debe cumplir con los requisitos del numeral 630.4.6.2.

El concreto puede ser transportado en camiones tipo volqueta u otro equipo provisto de agitadores, si los documentos del proyecto lo admiten o el interventor aprueba por escrito esta posibilidad. En tal caso, los recipientes deben ser metálicos, lisos en su interior, con las esquinas redondeadas, equipados con compuertas para controlar la descarga y provistos de cobertores adecuados para proteger el concreto contra la intemperie. El concreto transportado en estos equipos debe ser mezclado previamente y entregado con la consistencia y la uniformidad requeridas en la NTC 3318 (ASTM C94). La descarga en el punto de entrega debe ser completada en cuarenta y cinco minutos (45 min) desde que el cemento sea puesto en contacto con los agregados, lapso que el interventor puede variar según las condiciones climáticas del lugar o el uso de aditivos.

A su entrega en la obra, el interventor debe rechazar todo concreto que haya desarrollado algún endurecimiento inicial, así como aquel que no sea entregado dentro del límite de tiempo aprobado o no tenga el asentamiento dentro de los límites especificados.

El concreto que por cualquier causa haya sido rechazado por el interventor, debe ser retirado de la obra y reemplazado por el constructor, a su costa, por un concreto satisfactorio.

630.4.8 Colocación del concreto

630.4.8.1 Preparación para la colocación del concreto

Por lo menos cuarenta y ocho horas (48 h) antes de colocar concreto en cualquier lugar de la obra, el constructor debe notificar por escrito al interventor al respecto, para que este verifique y apruebe los sitios de colocación.

La colocación no puede comenzar, mientras el interventor no haya aprobado el encofrado, el refuerzo, las partes embebidas y la preparación de las superficies que

han de quedar contra el concreto. Dichas superficies deben estar completamente libres de suciedad, lodo, desechos, grasa, aceite, partículas sueltas y cualquier otra sustancia perjudicial. La limpieza puede incluir el lavado por medio de chorros de agua y aire, excepto para superficies de suelo o relleno, para las cuales este método puede no ser el adecuado.

Se debe eliminar toda agua estancada o libre de las superficies sobre las cuales se coloque la mezcla y controlar que, durante la colocación de esta y el fraguado, no se mezcle agua que pueda lavar o dañar el concreto fresco.

Las fundaciones en suelo contra las cuales se coloque el concreto, deben ser humedecidas completamente, o recubrirse con una delgada capa de concreto, si así lo exige el interventor.

630.4.8.2 Requisitos generales

La colocación del concreto se debe efectuar en presencia del interventor, salvo en determinados sitios específicos aprobados previamente por este.

El concreto no se puede colocar cuando esté lloviendo, a no ser que el constructor suministre cubiertas que, a criterio y aprobación del interventor, sean adecuadas para proteger el concreto desde su colocación hasta su fraguado.

Todo el concreto debe ser vaciado en horas de luz solar y su colocación en cualquier parte de la obra no se debe iniciar si no es posible completarla en dichas condiciones, a menos que se disponga de un adecuado sistema de iluminación, aprobado por el interventor.

El concreto no se debe exponer a la acción del agua antes del fraguado final, excepto lo que se dispone en el numeral 630.4.8.5 para el concreto depositado bajo agua. El concreto se debe colocar en un ambiente seco y, durante su colocación o después de ella, no ser expuesto a la acción de aguas o sue-los que contengan soluciones alcalinas, hasta pasado un periodo por lo menos de tres días (3 d), o de agua salada hasta los siete días (7 d). Durante este lapso, el concreto se debe proteger bombeando el agua perjudicial fuera de las formaletas y ataguías.

En todos los casos, el concreto se debe depositar lo más cerca posible de su posición final y no se debe hacer fluir por medio de vibradores. Los métodos utilizados para la colocación del concreto deben permitir una buena regulación de la mezcla depositada, evitando su caída con demasiada presión o chocando con las formaletas o el refuerzo. No se permite la caída libre del concreto desde alturas superiores a un metro (1,0 m), a menos que se compruebe que a una mayor altura el concreto no

presente segregación y cambios en la mezcla que conlleven a reducciones del desempeño, la resistencia y la durabilidad, y debe ser aprobado por el interventor.

Al verter el concreto se debe remover enérgica y eficazmente, para que las armaduras queden perfectamente envueltas, cuidando especialmente los sitios en que se reúna gran cantidad de ellas, y procurando que se mantengan los recubrimientos y separaciones de la armadura.

En todos los casos que sea difícil colocar el concreto junto a las formaletas, debido a las obstrucciones producidas por el acero de refuerzo o por cualquier otra condición, se debe procurar el contacto apropiado entre el concreto y las caras interiores de

las formaletas, vibrando estas últimas por medio de golpes en sus superficies exteriores con mazos de caucho o madera o por medio de vibradores de formaleta.

Cuando se vayan a usar equipos inclina-dos (canoas, canaletas), estos deben tener una longitud máxima de siete metros (7 m), manteniendo un flujo continuo, a una veloci-dad uniforme del concreto, con pendientes según el asentamiento del concreto (norma de ensayo INV E-404), no sobrepasando los valores de la Tabla 630-15.

Tabla 630 — 15. Pendientes máximas de equipos según el asentamiento del concreto

Asentamiento del concreto (mm)	Pendiente (V:H)
10 — 80	1:2
80 — 120	1:3

No se permite la colocación de concreto al cual se haya agregado agua después de salir de la mezcladora. Tampoco se permite la colocación de la mezcla fresca sobre concreto, total o parcialmente endurecido, sin que las superficies de contacto hayan sido preparadas como juntas, según se describe en el numeral 630.4.15.

El constructor debe tener la precaución de no mover los extremos del refuerzo que sobresalga del concreto, por lo menos durante las primeras veinticuatro horas (24 h) luego de colocado el concreto.

A menos que los documentos del proyecto indiquen algo contrario por el tipo de obra, el concreto se debe colocar en capas continuas horizontales cuyo espesor no exceda de treinta centímetros (0,3 m).

Las descargas deben suceder una tras otra, y cada una de ellas se debe colocar y compactar antes de que la precedente haya alcanzado el fraguado inicial, para que no quede una separación entre las mismas. La superficie superior de cada capa de

concreto se debe dejar algo áspera para lograr una liga eficiente con la capa subsiguiente. Cada capa superior debe ser compactada de forma que se evite la formación de una junta de construcción entre ella y la capa inferior.

Las capas que se completen en un día (1 d) de trabajo o que hayan sido colocadas poco antes de interrumpir temporalmente las operaciones, se deben limpiar de cualquier material objetable tan pronto como las superficies sean lo suficientemente firmes para retener su forma. En ningún caso se debe suspender o interrumpir temporalmente el trabajo dentro de los cuarenta y cinco centímetros (45 cm) debajo de la parte superior de cualquier superficie, a menos que los detalles de la obra tengan en cuenta un coronamiento de menos de dicho espesor, en cuyo caso, la junta de construcción se puede hacer en la parte inferior de dicho coronamiento.

El método y la manera de colocar el concreto se deben regular de forma que todas las jun-tas de construcción se coloquen en las zonas de bajo esfuerzo cortante y, en lo posible, en sitios que no sean visibles.

630.4.8.3 Colocación por bombeo

La colocación del concreto por bombeo puede ser permitida dependiendo de la adaptabilidad del método que se va a usar en la obra. El equipo se debe disponer de manera que las vibraciones derivadas de su operación no deterioren el concreto recién colocado.

Al emplear bombeo mecánico, la operación de la bomba debe ser tal que se produzca una corriente continua del concreto, sin bolsas de aire. Cuando se terminen las operaciones de bombeo, en caso de que se vaya a usar el concreto que quede en las tuberías, este se debe expeler de tal manera que no se conta-mine o se produzcan segregaciones.

Al emplear bombeo neumático, el equipo de bombeo se debe colocar lo más cerca posible del depósito de concreto. Las líneas de descarga deben ser horizontales o inclinadas hacia arriba respecto de la máquina de bombeo.

Cuando se utilice equipo de bombeo, siempre se debe disponer de los medios alternativos para continuar la operación de colocación del concreto en caso de que se dañe la bomba. El bombeo debe continuar hasta que el extremo de la tubería de descarga quede completa-mente por fuera de la mezcla recién colocada.

Los equipos de bombeo se deben limpiar cuidadosamente después de cada periodo de operación.

630.4.8.4 Colocación del agregado ciclópeo

La colocación del agregado ciclópeo se debe ajustar al siguiente procedimiento:

La roca, limpia y húmeda, se debe colocar cuidadosamente a mano, sin dejarla caer por gravedad en la mezcla de concreto simple, para no causar daño a las formaletas, a las alcantarillas, en el caso de cabezales, o al concreto adyacente parcialmente fraguado.

En estructuras cuyo espesor sea inferior a ochenta centímetros (80 cm), la distancia libre entre rocas o entre una roca y la superficie de la estructura, no debe ser inferior a diez centímetros (10 cm). En estructuras de mayor espesor, la distancia mínima se aumenta a quince centímetros (15 cm). En estribos y pilas no se puede usar agregado ciclópeo en los últimos cincuenta centímetros (50 cm) debajo del asiento de la superestructura o placa.

Si se interrumpe la fundición, al dejar una junta de construcción se deben dejar rocas sobresaliendo no menos de diez centímetros (10 cm) para formar una llave. Antes de continuar el vaciado del concreto, se debe limpiar la superficie donde se va a colocar el concreto fresco y humedecer la misma con agua limpia.

El concreto ciclópeo no se debe usar en estructuras cuya altura sea menor de sesenta centímetros (60 cm) y/o en las que el espesor sea inferior a treinta centímetros (30 cm).

La proporción máxima del agregado ciclópeo debe ser el cuarenta por ciento (40 %) del volumen total de concreto.

630.4.8.5 Colocación del concreto bajo agua

La construcción de estructuras de concreto bajo agua contempla diferentes técnicas, entre las cuales está el tipo tremie o descargas directas, para ello la mezcla debe ser de alta cohesión (antideslave). En otros casos, se debe estudiar la posibilidad de remover el agua mientras se hace el vaciado del concreto.

En cada caso, se debe revisar el diseño de la mezcla para ajustarla a las condiciones de colocación y debe ser aprobado por el interventor. Se debe verificar la efectividad de la mezcla de concreto antideslave, mediante la realización de una mezcla de prueba y sometiéndola a procedimientos o ensayos de laboratorio, aprobados por el interventor, que demuestren que el producto cumple su propósito.

Cuando haya colocación de concreto bajo agua, este se debe ubicar cuidadosamente en su lugar, en una masa compacta, mediante un sistema de colocación que permita depositarla en una operación continua.

No se debe colocar concreto dentro de corrientes de agua, y las formaletas diseñadas para retenerlo deben ser impermeables. El concreto se debe colocar de tal manera que se logren superficies aproximadamente horizontales, y que cada capa se deposite antes de que la precedente haya alcanzado su fraguado inicial, con el fin de asegurar la adecuada unión entre las mismas.

630.4.8.6 Temperatura del concreto

En condiciones normales de exposición y en concretos convencionales, la temperatura de la mezcla de concreto, inmediatamente antes de su colocación, debe estar entre diez y treinta y cinco grados Celsius ($10~^{\circ}C-35~^{\circ}C$). Cuando existan otras condiciones particulares específicas, ya sean del material, del ambiente o ambas, se deben realizar análisis pertinentes para determinar la temperatura máxima apropiada antes de la colocación, o el tratamiento más adecuado para reducir la temperatura del concreto.

Cuando se pronostique una temperatura ambiente inferior a cuatro grados Celsius (4 °C) durante el vaciado o en las veinticuatro horas (24 h) siguientes, la temperatura del concreto no puede ser inferior a trece gra-dos Celsius (13 °C) cuando se emplee en secciones de menos de treinta centímetros (30 cm) en cualquiera de sus dimensiones, ni inferior a diez grados Celsius (10 °C) para otras secciones.

Durante la colocación, la temperatura no debe exceder de treinta y cinco grados Celsius (35 °C), para que no se produzcan pérdidas en el asentamiento, fraguado falso o juntas frías. Cuando la temperatura de las formaletas metálicas o de las armaduras exceda de cincuenta grados Celsius (50 °C) se deben enfriar mediante rociadura de agua, inmediatamente antes de la colocación del concreto.

En caso de lluvia, se permite la colocación del concreto siempre y cuanto se implementen las acciones necesarias para garantizar la calidad del material y de la estructura.

630.4.9 Recubrimiento

Los recubrimientos del refuerzo en general deben cumplir lo establecido en el diseño de la estructura en los documentos del proyecto, pero en ningún caso estar por debajo de los mínimos establecidos en la NSR (requisitos de recubrimiento del refuerzo convencional y de tendones de preesfuerzo no adheridos).

La tolerancia del recubrimiento debe estar, de igual manera, de acuerdo con la NSR.

630.4.10 Agujeros para drenaje

Los agujeros para drenaje o alivio se deben construir de la manera y en los lugares seña-lados en los documentos del proyecto. Los dispositivos de salida, bocas o respiraderos para igualar la presión hidrostática se deben colocar más abajo que las aguas mínimas y también de acuerdo con lo indicado en los documentos del proyecto.

Los moldes para practicar agujeros a través del concreto pueden ser de tubería metálica, plástica o de concreto, cajas de metal o de madera. Si se usan moldes de madera, estos deben ser removidos después de colocado el concreto.

630.4.11 Vibración

El concreto colocado se debe consolidar mediante vibración interna, hasta obtener la mayor densidad posible, de manera que quede libre de cavidades producidas por partículas de agregado grueso y burbujas de aire, y que cubra totalmente las superficies de los encofrados y los materiales embebidos. Durante la consolidación, el vibrador se debe operar a intervalos regulares y frecuentes, en posición casi vertical y con su cabeza sumer-gida profundamente dentro de la mezcla.

Para lograr la compactación de cada capa antes de que se deposite la siguiente sin demorar la descarga, se debe usar un número suficiente de vibradores, con el fin de consolidar el concreto que se está recibiendo, dentro de los quince minutos (15 min) siguientes a su colocación dentro de las formaletas. Para evitar demoras en el caso de averías, se debe disponer de un (1) vibrador auxiliar en el sitio de la obra para fundiciones individuales hasta de cincuenta metros cúbicos (50 m3), y dos (2) vibradores auxiliares para fundiciones de mayor volumen.

Las vibraciones se deben aplicar en el punto de descarga y donde haya concreto depositado poco antes.

Los vibradores no deben ser empujados rápidamente, sino que se permite que ellos mismos se abran camino dentro de la masa de concreto y se retiren lentamente para evitar la formación de cavidades.

La vibración debe ser tal, que el concreto fluya alrededor del refuerzo y otros elementos que deban quedar embebidos en este y llegue hasta las esquinas de las formaletas.

La vibración no debe ser aplicada sobre el refuerzo, ni forzarse a secciones o capas de concreto que hayan endurecido a tal grado que el concreto no pueda volverse plástico por su revibración.

No se debe colocar una nueva capa de concreto, si la precedente no está debidamente consolidada.

La vibración no se debe usar para transportar mezcla dentro de las formaletas, ni aplicar directamente a estas o al acero de refuerzo, especialmente si ello afecta masas de mezcla recientemente fraguada.

Con el fin de obtener un concreto debida-mente compactado, carente de cavidades, hormigueros y similares, la vibración mecánica debe ser completada con la compactación manual que sea necesaria a lo largo de las superficies de las formaletas, y en las esquinas y puntos donde sea difícil obtener una vibración adecuada.

Las dimensiones de las agujas de los vibra-dores de inmersión y, en general, los tiempos de vibrado deben ser cuidadosamente controlados, de manera que se obtengan las densidades máximas sin sobrevibrar.

En el evento de que se utilicen mezclas autocompactantes, se debe estudiar la conveniencia de usar vibradores o no.

630.4.12 Protección y curado

Las medidas de protección y curado del concreto se deben implementar en todo momento, antes, durante y después de la colocación, con el fin de garantizar el desarrollo de las propiedades del concreto y de la estructura en general.

Los sistemas de protección y curado se deben utilizar, de acuerdo con las características del concreto, las condiciones ambientales en el sitio de la construcción (humedad relativa, temperatura ambiente, velocidad del viento, entre otras) y las características de la estructura. En todo caso se debe seguir lo establecido en el documento ACI 308R, Guía para el curado del concreto. El constructor debe realizar las pruebas necesarias para determinar el método más eficaz y eficiente de curado, el cual debe ser aprobado por el interventor.

En casos especiales, en los documentos del proyecto, el diseñador de la estructura debe establecer los tipos, los métodos, los procedimientos y los tiempos de protección y curado del concreto, específicos para el proyecto.

Se deben tomar todas las precauciones necesarias para proteger el concreto fresco contra las altas temperaturas y los vientos, que puedan causar un secado prematuro y la formación de agrietamientos superficiales. De ser necesario, se deben colocar cortinas protectoras contra el viento, hasta que el concreto haya endurecido lo suficiente para recibir el tratamiento de curado.

Durante el curado del concreto, este no debe estar expuesto a cargas e impactos no previstos por el diseñador.

También, se pueden usar selladores o sellan-tes regidos por la norma ASTM C1315, que al entrar en contacto con el concreto forman una película que endurece y sella, y poseen propiedades especiales como resistencia a los álcalis, resistencia a los ácidos, cualidades adhesivas y resistencia a la degradación por la luz ultravioleta. Estos compuestos ayudan al curado, protegen la estructura de daños causados por la penetración de líquidos per-judiciales para el concreto, brindan mayor durabilidad y minimizan la generación de polvo, algunos mejoran la apariencia del concreto.

630.4.13 Requisito en concretos masivos

Se debe realizar un plan de control de temperatura para la colocación y el curado del concreto masivo, con el fin de tomar todas las medidas pertinentes para no comprometer la resistencia y la durabilidad del concreto. El plan de control debe contener:

- Materiales y dosificación de la mezcla de concreto.
- Elevación de la temperatura ya sea calculada o medida.
- Temperatura máxima del concreto en el momento de su colocación y detalle de las medidas y equipos usados para garantizar que esta no se exceda.
- Descripción de las medidas y los equipos por usar para garantizar que no se exceda la diferencia de temperatura máxima.
- Descripción de los equipos y la metodología para el monitoreo de la temperatura del concreto y el diferencial de temperatura a lo largo del tiempo.
- Ubicación de los sensores de temperatura. La ubicación de estos sensores debe ser determinada por el diseñador en los documentos del proyecto, y como mínimo deben estar ubicados en los puntos en donde se presente la mayor y la menor temperatura.
- Medidas para el manejo y la reducción de la temperatura y del diferencial de la misma.
- Descripción de los procedimientos de curado.
- Descripción de la metodología para retirar la formaleta evitando altos diferenciales de temperatura.

Durante el proceso de fraguado y curado, la temperatura máxima del concreto no debe exceder los setenta grados Celsius (70 °C), y la diferencia de esta entre el centro y la superficie del concreto no debe exceder los diecinueve grados Celsius (19 °C). Cuando se proyecten estructuras con la presencia de concretos masivos, el diseñador estructural puede establecer, en los documentos del proyecto, los

requisitos de temperatura máxima para la verificación del interventor. El constructor debe establecer todas las estrategias necesarias para no sobrepasar dichos valores, y se debe hacer seguimiento a las temperaturas durante los primeros días de construcción.

Se puede usar cemento con bajo o moderado calor de hidratación, o un material cementante con contenido de ceniza volante o escoria clase F. No se deben usar aditivos aceleran-tes. Durante el mezclado, la colocación y el curado de un elemento con concreto masivo, se debe seguir el plan de control de tempera-tura aprobado por el interventor.

Se recomienda seguir la ACI 207.1R, Guía para el concreto masivo.

630.4.14 Remoción de las formaletas y de la obra falsa

El tiempo de remoción de formaletas y obra falsa está condicionado por el tipo y la localización de la estructura, el curado, el clima y otros factores que afecten el endurecimiento del concreto.

El constructor debe cumplir lo establecido por el diseñador estructural en los documentos del proyecto en cuanto a las resistencias mínimas a las cuales se puedan remover las formaletas.

Si las operaciones de campo son controladas por ensayos de resistencia de cilindros de concreto, la remoción de formaletas y demás soportes, se puede efectuar al lograrse las resistencias fijadas en el diseño. Los cilindros de ensayo deben ser curados bajo condiciones iguales a las más desfavorables de la estructura que representan.

La remoción de formaletas y soportes se debe hacer cuidadosamente y en forma tal, que permita al concreto tomar gradual y uniformemente los esfuerzos debidos a su peso propio.

De acuerdo con los lineamientos del diseñador consignados en los documentos del proyecto, el constructor debe presentar al interventor un procedimiento apropiado para el retiro de la obra falsa, de manera tal, que la estructura vaya tomando las cargas en la secuencia indicada por el diseñador de la estructura.

630.4.15 Juntas

Se deben construir juntas de construcción, contracción y dilatación, con las características y en los sitios indicados en los documentos del proyecto. El constructor no puede introducir juntas adicionales o modificar el diseño de

localización de las indicadas en dichos documentos, sin la aprobación del interventor. La resistencia y la durabilidad de la estructura no se debe ver afectada por las juntas.

En superficies expuestas, las juntas deben ser horizontales o verticales, rectas y continuas, a menos que se indique lo contrario. En general, se debe dar un acabado pulido a las superficies de concreto en las juntas y se deben utilizar para las mismas los rellenos, los sellos o los retenedores indicados en los documentos del proyecto.

630.4.16 Acabado

Todas las superficies de concreto deben recibir un acabado inmediatamente después del retiro de las formaletas. El tipo de acabado depende de lo establecido por el diseñador, en los documentos del proyecto, para cada estructura en particular.

Independiente del tipo de acabado establecido por el diseñador en los documentos del proyecto, se deben mantener los recubrimientos mínimos establecidos en el diseño.

630.4.16.1 Acabado convencional

Es el procedimiento usado para la mayoría de las estructuras. Inmediatamente después de remover las formaletas, todas las rebabas y salientes irregulares de la superficie del concreto se deben cincelar a ras de la superficie.

No se permite que sobresalgan elementos de refuerzo estructural como varillas, alambres o elementos no estructurales. En caso de que sobresalgan de la superficie se deben realizar procedimientos de intervención y acabado, aprobados por el interventor.

Cualquier irregularidad de la superficie, como cavidades pequeñas, grandes, profundas u hormigueros, debe ser corregida por el constructor, a su costa, mediante procedimientos adecuados para cada situación, previamente aprobados por el interventor.

Las zonas con hormigueros excesivos pue-den ser causa de rechazo de la estructura, en cuyo caso, el constructor debe demoler y reconstruir, a su costa, la parte afectada.

Todas las juntas de construcción y de dilatación en la obra terminada, se deben dejar cuidadosamente trabajadas y sin restos de mortero y concreto. El relleno de las juntas.

debe quedar con los bordes limpios en toda su longitud.

630.4.16.2 Acabado de pisos de puentes

Si el piso va a ser cubierto con una capa asfáltica, basta con asegurar que la superficie de concreto sea correctamente nivelada, para que presente las pendientes transversales indicadas en los documentos del proyecto.

Si el piso del puente se va a usar como capa de rodadura, debe ser sometido a las operaciones de acabado descritas en el artículo 500, para los pavimentos de concreto hidráulico.

630.4.16.3 Acabado de losas de pisos

Si los documentos del proyecto no establecen otra cosa diferente, su acabado debe ser como el descrito en el artículo 500, para los pavimentos de concreto hidráulico, exceptuando el macrotexturizado.

630.4.16.4 Acabado de andenes de concreto

El acabado superficial de los andenes debe ser el establecido en los documentos del proyecto, evitando superficies resbaladizas.

El diseño debe incluir la modulación y ejecución de las juntas, en cuyo caso se deben seguir los mismos procedimientos establecidos en el artículo 500.

630.4.17 Limpieza final

Al terminar la obra, y antes de la aceptación final del trabajo, el constructor debe retirar del lugar toda obra falsa, materiales excavados no utilizados, desechos, basuras y construcciones temporales, restaurando en forma aceptable para el interventor, toda propie-dad, tanto pública como privada, que pudiera haber sido afectada durante la ejecución de este trabajo y dejar el lugar de la estructura limpio y presentable. Cumpliendo todos los requisitos de manejo de Residuos de Construcción y Demolición (RCD) establecidos en la legislación colombiana.

630.4.18 Afectaciones por sismo

En la eventualidad de que se produzca un sismo durante el proceso de curado, el constructor debe tener especial cuidado en efectuar una revisión detallada del concreto colocado y de la estructura, luego de su ocurrencia, informando al interventor sobre cualquier daño motivado por el fenómeno. Sin perjuicio de ello, si así lo estima el interventor, se deben realizar los ensayos que considere convenientes para verificar la calidad del concreto, pudiendo ordenar el retiro de este si, a su criterio, los ensayos realizados revelaren alteraciones al concreto colocado.

630.4.19 Conservación

El concreto hidráulico debe ser mantenido en perfectas condiciones por el constructor, cumpliendo los requisitos mínimos establecidos en el presente artículo, hasta el recibo definitivo de los trabajos, sin que ello implique costo adicional alguno para INVÍAS.

Todo concreto defectuoso o deteriorado que no cumpla las características establecidas en los documentos del proyecto, debe ser intervenido por el constructor para llevarlo a las condiciones de diseño, sin costo adicional para INVÍAS. En todo caso, los procedimientos deben ser aprobados por el interventor, cualquiera sea el tipo de intervención. Se deben dejar registrados, en los documentos del proyecto, las reparaciones realizadas y el método de reparación.

630.4.20 Manejo ambiental

En adición a los aspectos generales indica-dos en el artículo 106, Aspectos ambientales, todas las labores de ejecución de obras de concreto estructural se deben realizar teniendo en cuenta lo establecido en los estudios o evaluaciones ambientales del proyecto y las normas y disposiciones vigentes sobre la conservación del ambiente y los recursos naturales.

Todas las actividades que se ejecuten en cumplimiento a esta especificación deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas actividades deben estar incluidas en los costos del proyecto, por tanto, no deben ser objeto de reconocimiento directo en el contrato.

Se debe asegurar que la adquisición de los recursos y el manejo de los residuos cumplan los requisitos legales ambientales vigentes. Se deben realizar todos los estudios, los tramites, los procedimientos y las actividades en obra necesarios para cumplir con las normas ambientales. Se debe entregar al interventor la documentación de la gestión ambiental.

630.5 Condiciones para el recibo de los trabajos

Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales por parte del constructor, con la supervisión y la aprobación del interventor:

- Verificar el estado y el funcionamiento de todo el equipo de construcción.
- Supervisar la correcta aplicación del método aceptado previamente, en cuanto a la elaboración y manejo de los agregados, así como la manufactura, el

transporte, la colocación, la consolidación, la ejecución de juntas, el acabado y el curado de las mezclas.

- Comprobar, mediante ensayos por parte del constructor, que los materiales por utilizar cumplan los requisitos de calidad exigidos por la presente especificación.
- Efectuar los ensayos necesarios para el control de la mezcla.
- Vigilar la regularidad en la producción de los agregados y en la mezcla de concreto, durante el periodo de ejecución de las obras.
- Verificar el cumplimiento de todas las medidas requeridas sobre seguridad y ambiente.
- Tomar, de manera cotidiana, muestras de la mezcla elaborada para determinar su resistencia, de acuerdo con el plan de calidad, previamente aprobado por el interventor, y la NSR.
- Realizar medidas para determinar las dimensiones de la estructura y comprobar la uniformidad de la superficie.
- Medir, para efectos de pago, los volúmenes de obra satisfactoriamente ejecutados.

Los laboratorios en donde se realicen los ensayos necesarios para el control de la calidad de los materiales del concreto y el control de la calidad del concreto deben ser empresas legalmente constituidas que cuenten con experiencia y/o trayectoria en ejecución de pruebas y ensayos de control de calidad de materiales, que puedan demostrar apropiadamente la competencia de su personal de laboratorio y cuyos informes de resulta-dos informados contengan la aprobación y la autorización para su emisión, mediante la firma del responsable técnico facultado para ello. El laboratorio debe contar con todo el equipamiento principal y auxiliar necesario para el correcto desempeño de sus actividades y asegurar que estos cuenten con la exactitud y la precisión adecuadas para lograr resultados válidos. El laboratorio debe contar con un programa de calibración de sus equipos y se debe asegurar de que los resultados de la medición sean trazables al SI, mediante alguna de las siguientes alternativas:

- La calibración de los equipos proporcionados por un laboratorio de metrología acreditado por ONAC.
- La comparación directa o indirecta a patrones nacionales o internacionales que cuenten con unidades del SI.
- Los valores certificados de materiales de referencia (MRC) proporcionados por productores competentes con trazabilidad metrológica establecida al SI.

El constructor es el responsable de garantizar que todos los ensayos necesarios se realicen. Los informes de ensayos deben ser entregados rutinariamente al interventor, al profesional a cargo del diseño, a los provee-dores de material y a la autoridad competente que verifique el cumplimiento de la calidad o que tome acciones correctivas.

630.5.1 Control de materiales

Para cada uno de los materiales se deben realizar los ensayos y procedimientos definidos en el plan de calidad. Si estos no son satisfactorios, se debe rechazar el material y el concreto que se haya elaborado con este.

Además, cada vez que lo considere necesario, el interventor debe efectuar u ordenar la ejecución de los ensayos de control que permitan verificar la calidad del material.

Se debe tener un registro de todos los ensayos y procedimientos de calidad, los cuales deben ser presentados al interventor.

630.5.1.1 Calidad del cemento hidráulico

Para todo cemento que llegue a la central de fabricación, sea esta de propiedad del constructor o de un proveedor, se deben realizar los ensayos de las normas mencionadas en el artículo 501 y con la frecuencia especificada en el mismo. Los resultados de los ensayos deben ser remitidos para su aprobación por parte del interventor.

630.5.1.2 Calidad de las adiciones suplementarias

El constructor debe verificar, mediante ensayos, las características de las adiciones suplementarias definidas en el plan de calidad o las especificadas en los documentos del proyecto. Para cada adición se deben verificar los requisitos de las normas definidas en el numeral 630.2.1.2 con la siguiente frecuencia:

- Una (1) vez por cada mes de ejecución de las obras y como mínimo tres (3) veces a intervalos convenientemente espaciados si la obra dura menos de tres (3) meses.
- Cada vez que se modifique el material suministrado.
- Cada vez que el interventor lo solicite.

630.5.1.3 Calidad del agua

Se deben ejecutar los ensayos relacionados en la Tabla 630 — 5 y la Tabla 630 — 6. El agua usada en la mezcla y el curado debe cumplir los límites establecidos en estas, y solo se acepta si se cumplen dichos límites.

630.5.1.4 Calidad de los agregados

De cada fuente de agregados por utilizar en la producción de concreto y para cualquier volumen previsto, se deben tomar cuatro (4) muestras y se deben ejecutar los ensayos que permitan verificar el cumplimiento de los requisitos establecidos en los numerales 630.2.1.3.1 y 630.2.1.3.2.

Para el caso de los agregados ciclópeos, de igual forma se deben realizar y documentar los ensayos para la verificación del cumplimiento de los requisitos mencionados en este artículo.

Los resultados de todas estas pruebas deben satisfacer las exigencias de los numerales anteriormente citados. Los agregados que no las cumplan no pueden ser utilizados en la elaboración de la mezcla de concreto, a no ser que se realicen pruebas o ensayos adicionales que demuestren que, la mezcla de concreto cumple las características establecidas para cada proyecto y sean aprobadas por el interventor.

En el caso de uso de agregados reactivos, se deben evaluar procedimientos o diseños de mezcla que permitan mitigar esa condición, previa aprobación del interventor. El proceso de evaluación de la reactividad y el diseño del plan de mitigación se debe realizar conforme a los requisitos de este artículo, en el numeral 630.2.6.1.

Durante la etapa de producción, el interventor debe examinar los acopios y ordenar el retiro de los agregados que, a simple vista, presenten restos vegetales, materia orgánica o tamaños superiores al máximo especificado. También, debe ordenar acopiar por separado aquellos que presenten alguna anomalía de aspecto (tal como distinta coloración), segregación, partículas alargadas o aplanadas y debe vigilar la disposición de todos los acopios y el estado de sus elementos separadores.

Además, sea que el constructor elabore la mezcla o tenga un proveedor que se la suministre, se debe verificar la calidad de los agregados, mediante la realización de los ensayos que se relacionan en la Tabla 630-16, con la frecuencia indicada en ella.

La curva granulométrica de cada ensayo individual, se debe ajustar a la franja de tolerancia construida a partir de la granulometría de diseño de la mezcla (fórmula de trabajo), con los límites fijados en la Tabla 630 - 18.

En caso de que los valores obtenidos excedan la franja de tolerancia definida para la fórmula de trabajo, pero no se salgan de las franjas normativas, el proveedor o el constructor deben preparar en laboratorio una mezcla con la gradación defectuosa, la cual se debe someter a todas las pruebas de valoración descritas en el presente artículo. En caso de que no cumpla todos los requisitos, el constructor debe demoler, a sus expensas, los elementos cuestionados y los debe reponer, sin costo alguno para INVÍAS.

Tabla 630- 16. Ensayos de verificación sobre los agregados para concreto estructural

Característica	Norma de ensayo	Frecuencia (Nota 1)		
Composición (F)				
Granulometría	INV E-213	1 por Jornada		
Módulo de finura	INV E-213	1 por Jornada		
Dureza, agregado grueso (O)				
Desgaste en la máquina de Los Ángeles	INV E-218	1 por mes		
Durabilidad (O)				
Pérdidas en ensayo de solidez en sulfatos (Nota 2)	INV E-220	1 por mes		
Reactividad de los agregados	Ver numeral 630.2.6.1.3	Tabla 630 — 17		
Limpieza (F)				
Terrones de arcilla y partículas deleznables	INV E-211	1 por semana		
Partículas livianas	INV E-221	1 al inicio del proyecto, 1 cada cambio de fuente y 1 cada 2,5 meses		
Material que pasa el tamiz de 0,075 mm (nro. 200)	INV E-214	1 por semana		
Geometría de las partículas (F)				
Índice de alargamiento	INV E-230	1 por semana		
Índice de aplanamiento	INV E-230	1 por semana		

Nota 1: se entiende como Jornada, un día (1 d) de producción de agregados.

Nota 2: el ensayo se puede realizar con sulfato de sodio o sulfato de magnesio.

Tabla 630 - 17. Ensayo para determinar la reactividad de los agregados (RAA)

Casos	Frecuencia mínima
Al inicio de todos los proyectos.	Se debe tomar una (1) lectura inicial del agregado de la fuente a usar
En todos los proyectos cuando se presente un cambio de fuente de agregado o de material cementante.	Se debe tomar una (1) lectura cada vez que se presente este caso
En todos los proyectos, excepto cuando se presente riesgo de RAA clase SC4.	Se debe tomar una (1) lectura cada 6 meses
En proyectos con riesgo de RAA clase SC4.	Se debe tomar una (1) lectura cada 3 meses

Cada vez que se realicen los ensayos para la evaluación de la reactividad del agregado, a partir de los resultados, se debe establecer la

mitigación de acuerdo con lo indicado en el numeral 630.2.6.1. El interventor puede modificar la frecuencia de los ensayos a la mitad de lo indicado en la Tabla 630-16, siempre que considere que los materiales son suficientemente o homogéneos o si en el control de recibo de la obra terminada hubiese aceptado sin objeción diez (10) lotes consecutivos.

Tamiz (mm / U.S. Standard) 4,75 2,36 1,18 0,600 0,300 0,150 ≥ 9,5 0,075 ≥ 3/8 Tolerancia Nro. 4 Nro. 8 Nro. 16 Nro. 30 Nro. 50 Nro. 100 Nro. 200 Pulgada Puntos de porcentaje (%) sobre la masa seca de los agregados ± 3 ±1

Tabla 630 — 18. Tolerancias granulométricas respecto de la fórmula de trabajo

630.5.1.5 Calidad del acero

El constructor debe presentar certificaciones periódicas originales de los fabricantes o de los proveedores del acero empleado en pasa-dores, barras de amarre y refuerzos requeridos para la construcción del pavimento, donde se demuestre que este satisface a cabalidad las exigencias del presente artículo. Ninguna certificación puede tener una antigüedad superior a treinta días (30 d).

Así mismo, cada vez que lo considere conveniente, el interventor debe ordenar o efectuar las pruebas necesarias para verificar que la calidad del acero empleado cumple las exigencias de este artículo, y lo establecido en el artículo 640.

630.5.1.6 Calidad de los aditivos, adiciones complementarias y productos químicos de curado

El constructor debe presentar certificaciones periódicas de los fabricantes o de los proveedores de estos productos, que brinden garantía en cuanto a la calidad y a la conveniencia de su utilización, para la revisión y la eventual aprobación de uso por parte del interventor.

630.5.2 Control del concreto

630.5.2.1 Control de requisitos de durabilidad

En el caso de que el proyecto tenga una especificación por desempeño, cuando sea aplicable, se deben controlar las características de durabilidad especificadas para el concreto en el numeral 630.2.6.1, siguiendo las normas de ensayo aplicables. Se debe definir el lote como una jornada de trabajo.

Tabla 630 — 19. Control de requisitos de durabilidad por método de desempeño verificado

Requisitos de durabilidad	Frecuencia
Penetración del ion cloruro del concreto	un (1) control al inicio del proyecto y un (1) control máximo cada 30 lotes
Permeabilidad al agua del concreto	un (1) control al inicio del proyecto y un (1) control máximo cada 30 lotes
Contracción	un (1) control al inicio del proyecto y un (1) control máximo cada 30 lotes
Resistencia a sulfatos	Solo en la validación de la mezcla de prueba

Para el caso de los proyectos que tengan una especificación por el método prescriptivo, se deben cumplir los requisitos límite de los tipos de exposición en el que se haya clasificado la estructura, los requisitos presentados en el numeral 630.2.6.1. De igual forma, se deben cumplir los requisitos por clase de concreto y resistencia presentados en los numerales 630.2.6.2 y 630.2.6.3. Entre estos requisitos está la relación a/mc, la resistencia (f'c), el contenido de aire, el material cementante y el contenido máximo de ion cloruro soluble en agua en el concreto. Todos estos parámetros se deben establecer durante la validación de la mezcla de prueba, deben ser aprobados por el interventor y se deben mantener durante todo el proyecto. En caso de requerir un cambio de estos parámetros, se debe realizar nuevamente una mezcla de prueba con todos los ensayos pertinentes, verificar que se cumplan los requisitos de durabilidad, resistencia y clase de concreto, y debe ser aprobada nuevamente por el interventor. Todo este control debe quedar documentado.

Se deben reportar los valores obtenidos. En cada característica, el concreto colocado debe cumplir los rangos máximos o mínimos que le son aplicables. Las estructuras en

concreto, que no cumplan una o varias características de durabilidad especificadas, deben ser demolidas y sus escombros transporta-dos a los sitios aprobados para su recepción, todo a expensas del constructor, quien ade-más debe reemplazar estas estructuras con otras que cumplan todas las exigencias de la especificación, sin que ello implique costo alguno para INVÍAS.

630.5.2.2 Control de los requisitos por clase de concreto

Cuando aplique se deben cumplir los requisitos límite por clase de concreto, requisitos presentados en el numeral 630.2.6.2. Todos estos parámetros se deben establecer durante la validación de la mezcla de prueba, deben ser aprobados por el interventor y se deben mantener durante todo el proyecto. En caso de requerir un cambio de estos parámetros se debe realizar nuevamente una mezcla de prueba

con todos los ensayos pertinentes, verificar que se cumplan los requisitos de durabilidad, resistencia y clase de concreto, y debe ser aprobada nuevamente por el interventor. Todo este control debe quedar documentado.

630.5.2.3 Dosificación

La mezcla se debe efectuar en las proporciones establecidas en la fórmula de trabajo; se admiten las variaciones establecidas en la NTC 3318 (ASTM C94).

La tolerancia del agua de mezclado se debe medir con la tolerancia especificada, corregida según la condición de humedad de los agregados y la cantidad de aditivo líquido, si se usa.

Para las mezclas dosificadas por fuera de estos límites, el constructor las debe tratar como producto no conforme para llevarlas a las características requeridas y, en caso de no cumplir, deben ser rechazadas por el interventor.

630.5.2.4 Consistencia

Se debe controlar la consistencia de cada carga entregada, para lo cual se debe tomar una muestra representativa de ella que se debe someter al ensayo de asentamiento (según la norma INV E-404/NTC 396) o flujo libre (según la NTC 5222), cuyo resultado debe estar dentro de los límites indicados en los documentos del proyecto para cada tipo de concreto, según lo mencionado en el numeral 630.4.2. Por ningún motivo se per-mite la adición de agua al concreto elaborado para incrementar su asentamiento o flujo, según el tipo de mezcla. La tolerancia del asentamiento debe estar en conformidad con el ACI 117, Especificación para la tolerancia de estructuras de concreto y materiales.

630.5.2.5 Contenido de aire

Si en el diseño de la mezcla se ha especificado un contenido de aire, se debe controlar en cada uno de los tres (3) primeros camiones que lleguen a la obra en la jornada de trabajo y en los tres (3) primeros después de cada interrupción, programada o no, durante el curso de dicha jornada, según la norma de ensayo INV E-406 (NTC 1032), la cual describe el método a presión. También, se permite medir el contenido de aire siguiendo la norma de ensayo ASTM C173. Los resultados deben corresponder al valor establecido al definir la fórmula de trabajo. Si el resultado de la muestra de algún camión está por fuera de los límites de tolerancia, se debe tomar una segunda muestra del mismo camión y se repite el ensayo. Si este último se encuentra dentro de los límites de tolerancia especificada se debe aceptar el viaje. En caso contrario, se debe rechazar. Si se rechaza el concreto de los tres (3)

camiones consecutivos por este motivo, se debe suspender la producción de la mezcla y la construcción, hasta que se detecten y corrijan las causas de la anomalía.

630.5.2.6 Peso unitario y densidad del concreto

Se debe controlar el peso unitario del concreto en estado fresco siguiendo la norma de ensayo INV E-405 (NTC 1926).

A los testigos extraídos se les debe determinar su densidad, según la norma de ensayo ASTM C642 (NTC 5653).

En principio, los resultados deben ser reporta-dos, pero no se deben emplear como criterio para aceptación o rechazo de la estructura construida, salvo que los documentos del proyecto o una especificación particular así lo indiquen y establezcan un criterio para su calificación. Sin embargo, si la densidad promedio

de los núcleos de un lote es menor de noventa y siete por ciento (97 %), o algún núcleo presenta densidad menor de noventa y seis por ciento (96 %), con respecto a la densidad del concreto elaborado al definir la fórmula de trabajo, es indispensable que el constructor mejore el vibrado del concreto, de manera que los requisitos establecidos anteriormente se logren en las posteriores verificaciones.

En cualquier caso, la presencia de hormigueros en los núcleos hace obligatoria la demolición del elemento de concreto estructural afectado y su reconstrucción con elementos que cumplan todos los requisitos de esta especificación.

630.5.2.7 Temperatura del concreto en estado fresco

Se debe controlar la temperatura del concreto en estado fresco, de manera que se cumpla la NTC 3357 (ASTM C1064). Si la temperatura del concreto, medida en la entrega de este, no cumple los requisitos del numeral 630.4.8.6 o el plan de control de temperatura para el caso de concretos masivos, se debe realizar inmediatamente una medición adicional sobre una nueva muestra del mismo despacho. Si no se cumplen los requisitos de temperatura, el concreto no se puede usar en obra.

630.5.2.8 Módulo elástico del concreto

La determinación del módulo de elasticidad del concreto se debe realizar cuando, en los documentos del proyecto, se requiera la determinación del módulo de elasticidad o por solicitud del interventor. Sobre los núcleos cilíndricos extraídos de la estructura

de concreto se debe determinar el módulo de elasticidad, mediante el procedimiento descrito en la norma de ensayo INV E-424 (NTC 4025).

El valor promedio de cada lote debe ser reportado y se debe emplear, si corresponde, en la revisión de los diseños estructurales de los documentos del proyecto.

630.5.2.9 Resistencia

Las muestras de concreto para fines de determinar la resistencia especificada deben ser tomadas, elaboradas, curadas y ensaya-das bajo las normas INV E-420/NTC 550 e INV E-410/NTC 673.

Las muestras para los ensayos de resistencia de cada tipo de concreto colocado en obra, se deben tomar por lo menos una (1) vez al día, o cada cuarenta metros cúbicos (40 m3) de concreto, o cada doscientos metros cuadrados (200 m2) de superficies de losas y muros.

La resistencia del concreto debe ser evaluada, con fines de aceptación o rechazo, de acuerdo con el procedimiento y los parámetros establecidos en la NSR.

Si en algún momento no se cumplen las exigencias establecidas en la NSR, se deben tomar las acciones contempladas en este documento, en la sección «Investigación de los resultados de ensayo con baja resistencia».

Se deben tomar tres (3) núcleos por cada valor no conforme. Los núcleos deben ser extraídos, deben ser colocados en recipientes O bolsas herméticas de tal forma que la hume-dad se preserve, deben ser transportados al laboratorio y se deben ensayar de acuerdo con la norma INV E-418/NTC 3658.

Se considera aceptable la resistencia del concreto de la zona representada por los núcleos, si el promedio de la resistencia a la compresión de los tres (3) núcleos, corregida por la esbeltez, es al menos igual al ochenta y cinco por ciento (85 %) de la resistencia especificada (f'c) en los documentos del proyecto, siempre que ningún núcleo tenga menos del setenta y cinco por ciento (75 %) de dicha resistencia. Cuando los núcleos den valores erráticos, se debe permitir extraer núcleos adicionales de la misma zona.

Si los criterios de aceptación anteriores no se cumplen, el constructor puede solicitar que, a sus expensas, se hagan pruebas de carga en la parte dudosa de la estructura conforme lo especificado en la NSR. Si estas pruebas dan un resultado satisfactorio, se acepta el concreto en discusión. En caso contrario, el constructor debe adoptar las medidas correctivas que solicite el interventor, las cuales pueden incluir la demolición parcial o total de la estructura, si fuere necesario, y su posterior reconstrucción, a costa del constructor, sin costo alguno para INVÍAS.

Siempre que se produzcan rechazos, se debe reiniciar el promedio de las medias móviles (fm) para las evaluaciones subsiguientes.

630.5.2.10 Curado

Toda fundida de concreto que no sea correctamente curada, puede ser rechazada por el interventor. Si se trata de una superficie de contacto con fundidas subsecuentes de concreto, deficientemente curada, el interventor

puede exigir la remoción de una capa hasta de cinco centímetros (5 cm) de espesor, por cuenta del constructor, y su consecuente reposición con una mezcla satisfactoria, correctamente curada.

Los especímenes curados en las mismas condiciones de la obra, deben dar como mínimo el ochenta y cinco por ciento (85 %) de la resistencia de los especímenes curados en agua para control de calidad. El cumplimiento de este requisito es garantía de que se está realizando un curado efectivo en obra.

Solo para efectos de aceptación y rechazo de la estructura construida se debe medir la resistencia del concreto, tanto en especímenes de control de calidad de obra como en especímenes de control del desarrollo de resistencia del concreto ya instalado, mediante la disposición de cilindros de control de la calidad al pie del elemento y/o extracción y ensayo de núcleos (norma INV E-418/NTC 3658). Lo anterior para determinar la efectividad de las labores de compactación y curado, si existe alguna incertidumbre con la estructura o con la resistencia en probetas. Únicamente, se debe permitir el uso de ensayos no destructivos, donde se obtuvieron resultados de ensayos con baja resistencia y es necesario realizar una investigación. Los casos en los que se deben realizar estos ensayos son los siguientes:

- Inadecuados procesos de compactación (ACI 309R, Guía para la consolidación del concreto).
- Inadecuados procesos de cuidado y con-trol de muestras (ACI 308R, Guía para curado del concreto; INV E-420/NTC 550).
- Cuando el curado en la estructura genere reducciones en la resistencia mayores de un quince por ciento (15 %) respecto a los obtenidos bajo la condición estándar.

Los ensayos no destructivos que se permiten son los contenidos en el ACI 228.2R, Reporte de métodos de ensayo no destructivos para la evaluación del concreto en estructuras. Estos ensayos se pueden usar, si se realiza una calibración del método con el concreto de obra, empleando un número suficiente de muestras, y con la aprobación del interventor. Estos ensayos son válidos principalmente para hacer

comparaciones del concreto en la misma estructura, mas no para evaluar la resistencia.

630.5.3 Calidad del producto terminado

Todo concreto donde los materiales, las mezclas y el producto terminado excedan las tolerancias de esta especificación, debe ser corregido por el constructor, quien debe asumir los costos adicionales, de acuerdo con las indicaciones del interventor y la aprobación de este. Dicha corrección puede contemplar, inclusive, la demolición parcial o total de la estructura.

630.5.3.1 Desviaciones máximas admisibles en las dimensiones laterales

- Vigas pretensadas y postensadas: de menos cero coma cinco centímetros a más uno coma un centímetro (- 0,5 cm a + 1,1 cm).
- Vigas, columnas, placas, pilas, muros y estructuras similares de concreto reforzado: de menos un centímetro a más dos centímetros (- 1,0 cm a + 2,0 cm).
- Muros, estribos y cimientos: de menos dos centímetros a más cinco centímetros (- 2,0 cm a + 5,0 cm).

630.5.3.2 Desplazamiento

El desplazamiento de las obras, con respecto a la localización indicada en los documentos del proyecto, no puede ser mayor que la desviación máxima positiva (+) indicada para las desviaciones en el numeral 630.5.3.1.

630.5.3.3 Otras tolerancias

- Espesores de placas: de menos un centímetro a más dos centímetros (- 1,0 cm a + 2,0 cm).
- Cotas superiores de placas y andenes: de menos un centímetro a más un centímetro (- 1,0 cm a + 1,0 cm).
- Recubrimiento del refuerzo: más o menos diez por ciento (± 10 %).
- Espaciamiento entre varillas: de menos dos centímetros a más dos centímetros (- 2,0 cm a + 2,0 cm).

Se deben cumplir los requisitos de la ACI 117, Especificación para la tolerancia de estructuras de concreto y materiales; para las especificaciones de tolerancia que no se presentan en este documento.

630.5.3.4 Regularidad de la superficie

La superficie no puede presentar irregularidades que superen los límites que se indican a continuación, al colocar sobre esta una regla de tres metros (3 m).

- Placas y andenes: cero coma cuatro centímetros (0,4 cm).
- Otras superficies de concreto simple o reforzado: un centímetro (1,0 cm).
- Muros de concreto ciclópeo: dos centímetros (2,0 cm).

630.5.4 Defectos a edades tempranas

Si se presentan fisuras a una edad temprana, se deben revisar detalladamente las mezclas utilizadas, los asentamientos medidos, el manejo de las películas o el procedimiento de protección y curado, las condiciones ambientales y el concreto y, en general, todos los elementos que puedan haber incidido en la ocurrencia del fenómeno.

Se deben tomar medidas de corrección y reparación, de acuerdo con el origen de estos defectos, las cuales deben ser asumidas por el constructor y aprobadas por el interventor.

En todos los casos, el constructor debe presentar, previamente, un documento con las acciones correctivas propuestas, incluyendo materiales, dimensiones y procedimientos que pretende utilizar para la reparación.

630.6 Medida

La unidad de medida del concreto estructural debe ser el metro cúbico (m3), aproximado a la décima (0,1), de mezcla de concreto real-mente suministrada, colocada y consolidada en obra, debidamente acabada y curada; aprobada por el interventor.

El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma de ensayo INV E-823.

El volumen se debe determinar multiplicando la longitud horizontal, medida a lo largo de la estructura, por el ancho y el espesor especificados en los documentos del proyecto. No se debe medir, para los fines de pago, ninguna obra ejecutada por fuera de las dimensiones o líneas establecidas en los documentos del proyecto.

De los volúmenes calculados se deben deducir los correspondientes a las tuberías de drenaje y elementos de acero, excepto los ocupados por el acero de refuerzo y de prees-fuerzo.

De los volúmenes calculados se deben deducir los correspondientes a las tuberías de drenaje y elementos de acero, excepto los ocupados por el acero de refuerzo y de prees-fuerzo.

630.7 Forma de pago

El pago se debe hacer al precio unitario del contrato por toda obra ejecutada, de acuerdo con esta especificación y aprobada por el interventor.

El precio unitario debe cubrir todos los cos-tos de adquisición, obtención de permisos y derechos de explotación y alquiler de las fuentes de las cuales se extraen los agregados pétreos, así como el descapote y la preparación de las zonas por explotar y la adecuación paisajística de las fuentes para recuperar sus características hidrológicas superficiales al terminar la explotación.

Debe cubrir, también, todos los costos de construcción o mejoramiento de las vías de acceso a las fuentes, y los de la explotación de ellas; la selección, la trituración y el eventual lavado y la clasificación de los materiales pétreos; el suministro, el almacenamiento, los desperdicios, los cargues, los transportes, los descargues y las mezclas de todos los mate-riales constitutivos de la mezcla cuya fórmula de trabajo se haya aprobado, incluyendo los aditivos, adiciones suplementarias y complementarias.

El precio unitario debe incluir, también, los costos por concepto de patentes utilizadas por el constructor; el suministro, la instalación y la operación de los equipos; la preparación de la superficie de las excavaciones si no está contemplada en el artículo 600; el suministro de materiales y accesorios para las formaletas y la obra falsa y su construcción y remoción; el diseño y la elaboración de las mezclas de concreto, su cargue, su transporte al sitio de la obra, la colocación y el vibrado; el suministro y la aplicación del producto para el curado del concreto terminado, la ejecución de jun-tas y de agujeros para drenaje, el acabado, la limpieza final de la zona de las obras y, en general, todo costo relacionado con la correcta ejecución de los trabajos especificados.

También, debe incluir el costo de la señalización preventiva y el ordenamiento del tránsito automotor durante la ejecución de los trabajos, y los costos de administración e imprevistos y la utilidad del constructor.

Las obras de concreto que estén cubiertas por otro ítem de pago, tampoco se consideran incluidas en el presente artículo.

El acero de refuerzo se debe medir y pagar de acuerdo con el artículo 640 y el de prees-fuerzo de acuerdo con el artículo 641.

630.8 Ítem de pago

630.8 Ítem de pago

Ítem	Descripción	Unidad
630.1	Tipo de concreto	Metro cúbico (m³)

Nota: se debe elaborar un ítem de pago para cada tipo de concreto que tenga el proyecto. Cada tipo de concreto se debe describir completamente, de acuerdo con las indicaciones del numeral 630,2.6.

ÍTEM DE PAGO

630.1.1 Concreto Clase F (21 MPA)

5. SEÑALIZACION DEFINITIVA

5.1. SEÑAL VERTICAL DE TRANSITO TIPO II (1,2*0,4) CON LÁMINA RETROREFLECTIVA

710.1 Descripción

Este trabajo radica en el suministro, almacena-miento, transporte e instalación de señales verticales de tránsito, para reglamentar, prevenir e informar a los usuarios, de acuerdo con los planos y demás documentos del proyecto y las instrucciones del interventor.

El diseño de las señales verticales, los mensajes y los colores, deben estar en concordancia con el Manual de Señalización Vial vigente del Ministerio de Transporte y demás normas que lo complementen o sustituyan.

El diseño de la señales verticales y señalización especial para túneles debe estar en concordancia con el Manual para el Diseño, Construcción, Operación y Mantenimiento de Túneles de Carretera para Colombia vigente y demás normas que lo complementen o sustituyan.

710.2 Materiales

710.2.1 Material retrorreflectivo

Retrorreflectividad es el fenómeno de reflexión de la luz hacia la fuente que la emite, con una dispersión mínima. La retrorreflectividad se describe en la norma ASTM E808.

El material retrorreflectivo para las señales verticales de tránsito y delineadores que cubre este artículo, debe cumplir las especificaciones contenidas en la NTC 4739. El tipo de material retrorreflectivo de cada señal debe ser el indicado en los documentos del contrato, en función del grado de retrorreflectividad, color y durabilidad requeridos en cada caso; debe cumplir con los requisitos de visibilidad y retrorreflexión definidos en el Manual de Señalización Vial vigente del Ministerio de Transporte. Para vías nacionales no se recomienda el uso de láminas retrorreflectivas tipo I y tipo II.

El constructor debe presentar las certificaciones de cumplimiento de dicha norma, expedidas por el proveedor del material, para la aprobación de la interventoría.

710.2.2 Material para tableros

Los tableros, para todas las señales, deben estar construidos en materiales que garanticen resistencia a cargas de viento e impacto, durabilidad, resistencia a la oxidación y que, adicionalmente, no representen un peligro grave al ser impactados por un vehículo. Se pueden usar láminas de acero galvanizado, aluminio, poliéster reforzado con fibra de vidrio modificada con acrílico y estabilizador ultravioleta u otro material.

Para determinar el tipo de material a utilizar, se deben tener en cuenta las condiciones atmoséricas y ambientales de la zona donde deben instalar las señales para lo cual, se recomienda tener en cuenta las siguientes consideraciones:

- En lámina de poliéster reforzado con fibra de vidrio o aluminio, para vías en zonas aledañas a áreas marinas o zonas que por sus condiciones ambientales sean propensas a generar problemas acentuados de oxidación de los materiales.
- En lámina de poliéster reforzado con fibra de vidrio, galvanizada o aluminio, para los otros casos no contemplados en el párrafo anterior.

710.2.2.1 Lámina de poliéster reforzado con fibra de vidrio

El material debe cumplir los siguientes requisitos:

710.2.2.1.1 Espesor

Debe ser de tres coma cuatro milímetros más o menos cero coma cuatro milímetros $(3,4 \text{ mm} \pm 0,4 \text{ mm})$, el cual se debe verificar como el promedio de las medidas en cuatro (4) sitios del borde de cada lámina, con una separación entre ellos igual a la

cuarta parte del perímetro de esta. La lámina no debe contener grietas visibles ni arrugas en las superficies que puedan afectar su comportamiento y alterar las dimensiones. Por lo menos una de las caras de la lámina debe ser completamente lisa.

710.2.2.1.2 Color

El color debe ser blanco uniforme.

710.2.2.1.3 Pandeo

La deflexión máxima vertical en el centro de una lámina cuadrada de setenta y cinco centímetros (75 cm) de lado, suspendida horizontalmente de sus cuatro (4) vértices, no debe ser mayor de doce milímetros (12 mm).

Luego, la lámina se debe colocar, suspendida en las mismas condiciones, en un horno a ochenta y dos grados Celsius (82 °C) durante cuarenta y ocho horas (48 h); se saca del horno, se suspende de la misma forma y se deja enfriar. La deflexión máxima vertical en el centro de la lámina, medida una vez alcance la temperatura ambiente, no debe ser mayor de doce milímetros (12 mm). Todas las medidas se deben tomar cuando la lámina se encuentre a temperatura ambiente.

710.2.2.1.4 Resistencia al impacto

Una lámina cuadrada de setenta y cinco centímetros (75 cm) de lado, debe resistir fuerzas de impacto que podrían agrietar otros plásticos o deformar metales. La lámina apoyada en sus extremos y a una altura de veinte centímetros (20 cm) del piso, debe resistir el impacto de una esfera de acero de cuatro mil quinientos gramos (4 500 g) en caída libre desde una altura de tres coma cinco metros (3,5 m), sin resquebrajarse.

710.2.2.1.5 Estabilidad térmica

Las características de resistencia no deben ser afectadas apreciablemente en un rango de temperaturas entre menos dieciocho y más cien grados Celsius (-

18 °C y +100 °C).

710.2.2.1.6 Resistencia al fuego

Los componentes de la lámina deben contener aditivos que la hagan menos propensa a iniciar y propagar llamas.

710.2.2.1.7 Protección ante la intemperie

Las láminas deben estar fabricadas con protección ante la intemperie por ambas caras; poseer una superficie uniforme químicamente pegada, recubrimiento gelatinoso (GelCoat) que no se pueda separar. Para comprobarlo, se sumerge una

muestra de diez centímetros (10 cm) por dos centímetros (2 cm) en una probeta que contenga cloruro de metileno, durante trece minutos (13 min), después de lo cual se seca, no debiendo aparecer fibra de vidrio por ninguna de las dos (2) caras.

710.2.2.1.8 Estabilización

Las láminas deben estar fabricadas de manera que no liberen constituyentes emigrantes (solventes, monómeros, etc.) con el tiempo; tampoco deben contener residuos de agentes desmoldeantes en la superficie del laminado que puedan interferir en la adherencia de la lámina retrorreflectiva.

710.2.2.1.9 Tratamiento de la cara frontal

Previamente a la aplicación del material retrorreflectivo, la lámina debe limpiarse, desengrasarse y secarse de toda humedad.

710.2.2.2 Lámina de acero galvanizado

El material debe cumplir los siguientes requisitos:

710.2.2.2.1 Material

La lámina debe ser de acero laminado en frío y revestida por ambas caras con una capa de zinc, aplicada por inmersión en caliente o por electrólisis, según las normas NTC 3940 y NTC 4011; después del galvanizado, se debe preparar la pintura según la NTC 6146 (ASTM D6386).

710.2.2.2 Espesor

La lámina de acero debe tener un espesor de uno coma cinco milímetros, con una tolerancia de más o menos cero coma quince milímetros (1,5 mm \pm 0,15 mm). La medida puede efectuarse en cualquier parte de la lámina, a una distancia no menor de diez milímetros (10 mm) del borde.

710.2.2.2.3 Resistencia al doblez

Una probeta cuadrada de cinco centímetros (5 cm) de lado, no sometida a tratamientos térmicos previos, no debe presentar desprendimiento de zinc cuando se dobla girando ciento ochenta grados Celsius (180 °C), con una luz igual al espesor de la lámina.

710.2.2.4 Tratamiento de la cara frontal

Previamente a la aplicación del material retrorreflectivo, la lámina galvanizada debe ser limpiada y desengrasada; además, debe estar libre de óxido blanco. El galvanizado debe tener una superficie de terminado producida con abrasivo grado cien (100) o más fino.

710.2.2.2.5 Tratamiento de la cara posterior

Una vez cortada y pulida, la lámina debe limpiarse y desengrasarse, aplicando seguida-mente una pintura base (wash primer o epoxi-poliamida), para colocar finalmente una capa de esmalte sintético blanco.

710.2.2.3 Lámina de aluminio

El material debe cumplir los siguientes requisitos:

710.2.2.3.1 Material

La lámina de aluminio debe ser de aleaciones 6061-T6, 5052-H38, NTC 1685 (ASTM B209) o extrusiones similares.

710.2.2.3.2 Espesor

El espesor debe ser de dos milímetros, medidos con una tolerancia de más o menos cero coma dos milímetros (2 mm \pm 0,2 mm). La medida se puede efectuar en cualquier parte de la lámina, a una distancia no menor de diez milímetros (10 mm) del borde.

710.2.2.3.3 Tratamiento de la cara frontal

Previamente a la aplicación del material retrorreflectivo, la lámina debe estar limpia, desengrasada y seca de toda humedad; igualmente, debe estar libre de óxido blanco. El aluminio debe tener una superficie de terminado producida con abrasivo grado cien (100) o más fino.

710.2.2.3.4 Tratamiento de la cara posterior

Una vez cortada y pulida, la lámina se debe limpiar y desengrasar, aplicando seguidamente una pintura base (wash primer o epoxipoliamida), para colocar finalmente una capa de esmalte sintético blanco.

710.2.2.4 Consideraciones adicionales

Cuando se use este material para señales verticales de destino, de información en ruta y señales elevadas, se deben elaborar en lámina calibre veinte (20) como mínimo. A los tableros de las señales elevadas, se les puede hacer dos (2) dobleces o pestañas de dos centímetros (2 cm) cada una, en sus cuatro (4) bordes, con el objeto de darle mayor rigidez. Los tableros deben ser montados sobre una estructura que garantice su estabilidad y rigidez, la cual debe ser fijada al sistema de soporte.

710.2.3 Material para postes y brazos de los postes

Se pueden utilizar distintos materiales y sistemas de soporte, siempre y cuando estos cuenten con el sustento técnico y/o ensayos de laboratorio certificados que demuestren que los mismos cumplen las condiciones descritas anteriormente o sistemas abatibles o quebradizos que no generen superficies cortantes o punzantes. Para los anteriores casos se debe contar con la previa autorización mediante resolución motivada emitida por el Ministerio de Transporte. En caso contrario se deben utilizar sistemas de soporte constituidos por poste monolítico y brazos, elaborados en perfil en ángulo de hierro de dos (2) pulgadas por dos (2) pulgadas por un cuarto (1/4) de pulgada, de espesor para el elemento vertical y un octavo (1/8) de pulgada de espesor para los elementos horizontales, con límite de fluencia mínimo de veinticinco kilogramos por milímetro cuadrado (25 kg/mm2) en todos los tipos de señales, el cual debe ser de primera clase, no se debe permitir hormigueo en ninguna parte de su longitud. También pueden ser fabricados en tubo galvanizado redondo o cuadrado, de dos (2) pulgadas y dos milímetros (2 mm) de espesor; en este caso, todos los extremos expuestos deben estar sellados con su respectiva tapa metálica soldada en todo su perímetro para evitar la penetración de agua.

El perfil debe ser de primera clase, sin hormigueos en ninguna parte de su longitud; no se deben aceptar añadiduras ni traslapos en postes y brazos. El galvanizado se debe aplicar por inmersión en caliente, según las normas NTC 2076 (ASTM A153) y NTC 4011 (ASTM A653).

Se debe garantizar la rigidez de las láminas de los tableros correspondientes a las señales preventivas (SP), reglamentarias (SR), informativas de identificación, de información general, de servicios y turísticas (SI) y los delineadores, fijándolas a una cruceta formada entre el poste y sus brazos, los cuales deben formar un perfecto plano de apoyo para el tablero, el cual debe aislarse con materiales que eliminen el efecto rocío en la señal cuando está en contacto con la lámina del tablero, en los casos que éstos se construyan con materiales que produzcan dicho efecto.

La soldadura del brazo debe ser con piquete o suplemento. En señales dobles, la rigidez se debe garantizar con dos (2) crucetas del mismo tipo citado anteriormente, debidamente soldadas.

Se deben adoptar medidas que dificulten el robo u otras acciones vandálicas que alteren la correcta posición de las señales. Entre otros se puede fijar el tablero de la señal con remaches, usar pernos con tuerca antivandálicas o doblar los pernos, aplicar soldadura o epóxico a los pernos para dificultar el robo de las señales. Además, los postes deben ser anclados en hormigón de suficiente resistencia para evitar el robo del sistema total. El sistema de soporte debe ser de color blanco y, su material, inoxidable o debe ser tratado con materiales anticorrosivos.

Todo elemento de fijación debe ser de un material inoxidable y que no manche el mate-rial de la señal.

En condiciones especiales, en donde no exista la distancia longitudinal suficiente que permita colocar dos (2) señales verticales individuales separadas, se pueden adosar hasta dos (2) tableros de señales verticales en un solo soporte; en tal caso, los dos (2) tableros deben ser del mismo tamaño sesenta, setenta y cinco, noventa o ciento veinte centímetros (60 cm, 75 cm, 90 cm o 120 cm). Cuando se instale una señal preventiva y una reglamentaria para una misma situación, la señal preventiva se debe adosar en la parte superior del soporte.

El sistema de soporte de las señales elevadas debe diseñarse estructuralmente de tal forma que se garantice su estabilidad ante todas las cargas a las que pueda estar sometida la estructura y acorde con el tamaño de los tableros. También, se debe garantizar la posición correcta de los tableros y, adicionalmente, que la estructura no represente un peligro grave al ser impactada por un vehículo. Estos elementos se deben diseñar acorde con las siguientes normas: AISC-360, AISC-303 y el Steel Construction Manual (AISC), involucrando las cargas y condiciones de impacto estipuladas por MASH-2 de la AASHTO.

710.2.4 Material para anclaje a la fundación

Los postes se deben diseñar con un anclaje en la parte inferior, soldado en forma de T, con ángulo de acero galvanizado de veinticinco milímetros (25 mm) por veinticinco milímetros (25 mm) por tres coma dieciocho milímetros (3,18 mm), con límite de fluencia mínimo de doscientos cincuenta megapasacales (250 MPa). En los casos donde así lo indique el diseño, se debe realizar el anclaje a la fundación conforme con lo indicado en los planos de diseño aprobados para el proyecto.

El galvanizado se debe aplicar por inmersión en caliente, según las normas NTC 2076 (ASTM A153) y NTC 4011 (ASTM A653).

710.2.5 Recubrimiento de los postes

Los postes, crucetas y anclajes galvanizados deben ser recubiertos con esmalte blanco.

710.2.6 Soldadura

Todos los procedimientos de soldadura se deben llevar a cabo por soldadores con calificación vigente en observancia de la norma AWS y siguiendo las especificaciones del artículo 650, Estructuras de acero. La soldadura se debe aplicar antes del galvaniza-do.

710.2.7 Dimensiones de los tableros

Se deben atender las disposiciones sobre las dimensiones de tableros mencionadas en el Manual de Señalización Vial vigente del Ministerio de Transporte.

710.2.8 Dimensiones de los postes

Se deben atender todas las disposiciones sobre las dimensiones de los postes indicadas en el Manual de Señalización Vial vigente del Ministerio de Transporte.

710.2.9 Material para el anclaje

Las señales se deben instalar en el piso en un anclaje de concreto simple cuya resistencia a la compresión a veintiocho días (28 d) sea, como mínimo, diecisiete megapascales (17 MPa) siguiendo las especificaciones del artículo 630, Concreto estructural.

Dentro del anclaje se debe aceptar la inclusión de dos (2) capas de cantos de diez centímetros (10 cm) de tamaño máximo, una superior y otra inferior, con el fin de dar rigidez a la señal instalada, mientras fragua el concreto.

710.3 Equipo

Se debe disponer de los equipos necesarios para la correcta ejecución de los trabajos, incluyendo:

- Hoyadoras agrícolas, barras de acero y palas.
- Llaves fijas o de expansión para tornillos.
- Martillo de tamaño tal que permita doblar los tornillos una vez apretadas las tuercas.
- Remachadora.

710.4 Ejecución de los trabajos

710.4.1 Ubicación de las señales

Las señales se deben instalar en los sitios que indiquen los planos del proyecto aprobados por el interventor, de conformidad con el Manual de Señalización Vial vigente del Ministerio de Transporte.

Se debe tener presente que todas las medidas deben ser realizadas por una comisión de topografía.

710.4.2 Excavación

El constructor debe efectuar una excavación cilíndrica para el anclaje de la señal, de veinticinco centímetros (25 cm) de diámetro y sesenta centímetros (60 cm) de profundidad.

Con el fin de evitar que la señal quede a una altura menor a la especificada cuando se instale en zonas donde la carretera transcurre en terraplén, en este caso la excavación solo se debe realizar en una profundidad de treinta centímetros (30 cm) pero el constructor debe, además, instalar una formaleta de la altura necesaria para que, al vaciar el concreto, la señal quede correctamente anclada y presen-te la altura especificada.

710.4.3 Anclaje de la señal

El anclaje se debe realizar rellenando la excavación con un concreto que presente las características indicadas en el numeral 710.2.9. También, se debe aceptar la inclusión de las capas de cantos a que hace referencia el mismo numeral.

710.4.4 Instalación de la señal

El constructor debe instalar la señal de manera que el poste presente absoluta verticalidad y que se obtenga la altura libre mínima indicada en los documentos del proyecto.

El tablero se debe fijar al poste mediante tornillos de dimensiones mínimas de ocho milímetros (8 mm) (5/16 de pulgada) por una (1) pulgada, rosca ordinaria, arandelas y tuercas, todo galvanizado por proceso de inmersión en caliente, a los cuales se les da golpes para dañar su rosca y evitar que puedan ser retira-dos fácilmente. Además, se deben instalar cuatro (4) remaches a diez centímetros (10 cm) de distancia, medidos desde los tornillos hacia el centro de la cruceta. También se pueden utilizar otros sistemas de aseguramiento que impidan el retiro del tornillo o elemento de fijación.

710.4.5 Consideraciones adicionales

Adicionalmente, se deben atender todas las disposiciones contenidas en el Manual de Señalización Vial vigente del Ministerio de Transporte y demás normas que lo complementen o sustituyan.

710.4.6 Plan de Manejo de Tránsito (PMT)

El constructor debe contar con un PMT e instalar todos los elementos de señalización preventiva en la zona de los trabajos, de acuerdo con lo establecido en el Manual de Señalización Vial vigente del Ministerio de Transporte, los cuales deben garantizar la seguridad permanente tanto del personal y de los equipos de construcción, como de los usuarios y transeúntes, durante las veinticuatro horas (24 h) del día.

Para actividades que no impliquen el cierre total de la vía, el interventor debe dar su visto bueno previo a la presentación de un PMT. Para casos que impliquen el cerramiento total de la vía, se deben tramitar los permisos correspondientes ante la autoridad competen-te y se debe presentar el PMT aprobado por el interventor.

710.4.7 Limitaciones en la ejecución

No se debe permitir la instalación de señales de tránsito en instantes de lluvia, ni cuando haya agua retenida en la excavación o el fondo de esta se encuentre muy húmedo, por instrucciones del interventor.

Toda el agua retenida debe ser removida antes de efectuar el anclaje e instalar la señal.

710.4.8 Manejo ambiental

Adicional a los aspectos generales indicados en el artículo 106, Aspectos ambientales, todas las labores requeridas para la instalación de señales verticales de tránsito, deben realizarse teniendo en cuenta lo establecido en las normas y disposiciones vigentes sobre la conservación del ambiente y los recursos naturales.

Todas las actividades que se ejecuten en cumplimiento a esta especificación, deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas actividades se deben incluir en los costos del proyecto; por tanto, no son objeto de reconocimiento directo en el contrato.

710.5 Condiciones para el recibo de los trabajos

710.5.1 Controles

Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales:

- Verificar el estado y el funcionamiento de todo el equipo utilizado por el constructor.
- Comprobar que todos los materiales cumplan los requisitos exigidos en el numeral 710.2.
- Efectuar mediciones de retrorreflectividad con un retrorreflectómetro que mida directamente los valores en las unidades candela/lux/m2, indicadas en la NTC 4739. La calibración de los equipos retrorreflectómetro se debe realizar mediante una placa calibradora vigente y en buen estado, generada por un laboratorio acreditado, de acuerdo con lo señalado en la norma ASTM E1709.
- Corroborar la correcta instalación de las señales, de acuerdo con este artículo.
- El plan de calidad y el plan de inspección, medición y ensayo son de obligatorio cumplimiento tal como se encuentra expresado en el numeral 103.2 del artículo 103, Responsabilidades especiales del constructor.

La interventoría debe exigir al constructor, el certificado de conformidad expedido por el Organismo Nacional de Acreditación de Colombia (ONAC), o por un organismo de certificación de productos del país de origen, debidamente acreditado para certificar dichos materiales, aportado por las compañías fabricantes o lo que establezca la Superintendencia de Industria y Comercio en materia de evaluación de la conformidad. El certificado debe indicar que el producto se ha ensayado según los métodos de prueba definidos en la NTC 4739.

El interventor debe contar y medir, para efectos de pago, las señales correctamente elaboradas e instaladas.

710.5.2 Condiciones específicas para el recibo y tolerancias

710.5.2.1 Calidad de los materiales

No se deben admitir tolerancias en relación con los requisitos establecidos en el numeral 710.2, para los diversos materiales que conforman las señales y su anclaje.

710.5.2.2 Excavación

La excavación no puede tener dimensiones inferiores a las establecidas en el numeral 710.4.2.

710.5.2.3 Inspección previa

Previo al recibo de las señales, el interventor debe hacer una inspección en horas nocturnas, con la ayuda de una linterna apoyada en la frente, con la cual se debe iluminar la señal percibiendo su calidad y detectando zonas que no reflectan.

710.5.2.4 Instalación

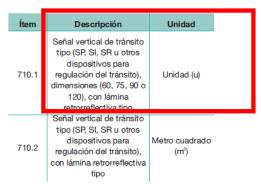
Las señales verticales de tránsito únicamente se deben aceptar si su instalación está en un todo de acuerdo con las indicaciones de los planos, del interventor y de lo señalado en el presente artículo

Todas las deficiencias que excedan las tolerancias mencionadas deben ser subsanadas por el constructor bajo su propia cuenta y riesgo, y aprobadas por el interventor.

710.6 Medida

Las señales verticales de tránsito se deben medir por unidad (u), suministrada e instalada de acuerdo con los documentos del proyecto y este artículo, aprobada por el interventor.

Las señales de tránsito que hayan sido contratadas por metro cuadrado (m2), se deben pagar según esta unidad de medida aproxima-da a la centésima de metro cuadrado del área reflectiva del tablero de la señal suministrada e instalada de acuerdo con los documentos del proyecto y este artículo, aprobadas por el interventor. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.


710.7 Forma de pago

El pago de las señales verticales de tránsito se debe realizar al respectivo precio unitario del contrato, por todo trabajo ejecutado de acuerdo con esta especificación y aprobado por el interventor.

El precio unitario debe cubrir los costos de todos los materiales que conforman la señal, su fabricación, desperdicios, almacenamiento, transporte e instalación; las mediciones topográficas requeridas, la excavación, el transporte y disposición en los sitios que defina el interventor de los materiales excava-dos; el suministro y la colocación de los cantos, el concreto y las formaletas que eventualmente se requieren para el anclaje, así como todo costo adicional necesario para el correcto cumplimiento de esta especificación.

El precio unitario debe incluir también, los costos de administración, imprevistos y la utilidad del constructor.

710.8 Ítem de pago

Nota: se debe elaborar un ítem para cada tipo de señal y de lámina retrorreflectiva incluido en el contrato.

710.1 señal vertical de tránsito tipo SP y SR dimensiones (60,75,90 o120) con lamina retroflectiva tipo II

Tipo de señal	Vías urbanas principales o de menor jerarquía y carreteras con ancho de coronas menor de 6 m		banas de jerarquía or a las principales carreteras con cho de corona entre 6 y 9 m	
Preventivas	Cuadrado de 60 x 60 cm	Cuad	ado de 75 x 75 cm	
Preventiva SP-40	Rectángulo de 90 x 30 cm	Rectán	ulo de 120 x 40 cm	
Reglamentarias	Círculo de 60 cm de diámetro	Círo	ulo de 75 cm de diámetro	
Reglamentaria SR-01	Octágono con altura de 60 cm	a	octágono con cura de 75 cm	
Reglamentaria SR-02	Triángulo equilátero 75 cm de lado	e	Triángulo uilátero 90 cm de lado	
Informativas	Rectángulo de 50 x 60 cm	Rectán	ulo de 60 x 75 cm	
Informativas de identificación	Escudos de 60 cm de altura y 60 cm de ancho		dos de 75 cm de ura y 75 cm de ancho	
Informativas de destino y de información en ruta	Rectángulo: ancho y altura dependen del texto		julo: ancho y altura en del texto	
Informativas turísticas	Cuadrado de 60 cm de lado	Cuadra	lo de 75 cm de lado	

5.2. LINEA DE DEMARCACION CON PINTURA EN FRIO

700.1 Descripción

Este trabajo consiste en el suministro, almacenamiento, transporte y aplicación de pintura de tráfico o resina termoplástica de aplicación en caliente, retrorreflectiva con microesferas de vidrio y/o cerámicas para líneas y marcas viales sobre un pavimento, de acuerdo con las dimensiones y los colores que indiquen los documentos del proyecto.

700.2 Materiales

Se pueden utilizar pinturas de aplicación en frío, resinas termoplásticas, materiales prefabricados de larga duración o plásticos de dos (2) componentes de aplicación en frío que cumplan los requisitos de la NTC 1360. Si los documentos del proyecto no indican otra cosa, la selección del material por utilizar para un caso específico se debe hacer de acuerdo con el criterio descrito en el numeral 700.4.1.

700.2.1 Pintura de aplicación en frío

La pintura se clasifica en tres (3) grupos: (i) a base de agua; (ii) a base de solventes y (iii) porcentaje de sólidos del cien por ciento (100 %).

El agua utilizada para la disolución de la pintura debe poseer las condiciones mínimas especificadas por el fabricante; los solventes emplea-dos en pinturas deben cumplir con la cantidad máxima indicada en la NTC 1102 de benceno, metanol y compuestos organoclorados; para la resina utilizada el fabricante debe presentar un espectro

infrarrojo de la pintura, en los casos que se solicite, cumpliendo lo indicado en la NTC 1360.

Todo envase de pintura se debe rotular según los requerimientos mínimos de la NTC 1360.

700.2.1.1 Características de la pintura líquida

700.2.1.1.1 Color y estabilidad

Blanco o amarillo, que cumplan los requerimientos de color y patrones indicados en la NTC 1360 o en la Tabla 700 - 1.

El cambio de color ΔE debe ser, para pinturas blancas, menor o igual a seis unidades CIELAB (ΔE

- ≤ 6) y, para pinturas amarillas, menor o igual a diez unidades CIELAB (∆E
- ≤10), cuando el tiempo de ensayo sea de

Característica	Color				
Caracteristica	Amarillo	Blanco			
L	72 a 82	≥ 90			
A	18 a 27	0 a -2,2			
b	74 a 86	0 a 5			

Tabla 700 - 1. Valores de color de pintura para demarcación de aplicación en frío

trescientas horas (300 h). La medición del color se debe efectuar de acuerdo con la norma ASTM D1535; la determinación de la estabilidad del color después de realizar el ensayo se debe hacer con base en la norma ASTM G154 y la diferencia de color se debe calcular con la norma ASTM D2244.

700.2.1.1.2 Composición

- Pigmento: entre cincuenta y sesenta por ciento (50 % y 60 %), en masa.
- Agentes de unión: entre cuarenta y cincuenta por ciento (40 % y 50 %), en masa.
- Ligante: copolímero acrílico de bajo peso molecular y liberación rápida de solventes.

Se pueden emplear otras composiciones, siempre y cuando las pinturas acabadas cumplan las exigencias de la presente especificación.

700.2.1.1.3 Tiempo de secado

- Al tráfico: máximo treinta minutos (30 min), sin transferencia de pintura a ninguna de las llantas de un vehículo.
- No "pick up": tiempo menor o igual a quince minutos (15 min) para una capa de quince más o menos cero coma cinco mils (15 mils \pm 0,5 mils) de espesor a una temperatura de veintitrés más o menos dos grados Celsius (23 °C \pm 2 °C) y una humedad relativa de cincuenta más o menos cinco por ciento (50 % \pm 5 %).

Se considera tiempo de secado no "pick up" cuando una película de pintura ha llegado a una fase donde no se adhiere a la cubierta de un neumático que pase sobre ella; el ensayo se debe hacer de acuerdo con el método de la NTC 5734.

700.2.1.1.4 Viscosidad

Debe estar comprendida entre setenta y cinco y noventa y cinco unidades Krebs (75 y 95 KU), a una temperatura de veinticinco grados Celsius (25 °C). Esta determinación se hace con base en la NTC 559.

700.2.1.1.5 Contenido de agua

Para pinturas a base de solventes diferente al agua, no mayor del cero coma cinco por ciento (0,5 %), en masa, para pinturas en disolución.

700.2.1.1.6 Masa unitaria

La masa unitaria de la pintura a una temperatura de veinticinco grados Celsius (25 °C) debe corresponder a la indicada por el fabricante, y su variación debe estar sujeta a los rangos de la NTC 561.

700.2.1.1.7 Conservación en el envase.

La pintura seleccionada para homologación, al cabo de seis (6) meses de la fecha de fabricación, habiendo permanecido al interior y con temperatura entre cinco y treinta y cinco grados Celsius (5 °C y 35 °C), no debe presentar sedimentación excesiva en envase lleno y recientemente abierto. Se debe poder dispersar a un estado homogéneo por agitación con espátula, después de lo cual no debe presentar coágulos, natas, depósitos duros, ni separación de color. En todo cuñete o envase de pintura debe aparecer la marca del fabricante y la fecha de producción. No se pueden aplicar pinturas con más de un (1) año de elaboración O sin etiqueta de fecha de producción 700.2.1.1.8 Estabilidad en envase lleno

La pintura no debe aumentar su consistencia o viscosidad; debe estar dentro del rango de sesenta y ocho y ciento cinco unidades Krebs (68 y 105 KU) medida a la temperatura de veinticinco grados Celsius (25 °C), para pinturas a base de agua, en más de cinco unidades Krebs (5 KU), para pinturas a base de solventes y para pinturas sin solvente, plástico en frío, no se debe presentar un cambio mayor del

cinco por ciento (5 %) en la viscosidad, respecto de la definida por el fabricante ni tener problemas de inestabilidad cuando se ensaye, de acuerdo con lo establecido en la NTC 1360.

El ensayo que se debe utilizar para evaluar esta variación, es el indicado en la norma ASTM D1849.

700.2.1.1.9 Estabilidad a la dilución

La pintura debe permanecer estable y homogénea, sin originar coagulaciones ni precipita-dos, cuando se diluya una muestra de ochenta y cinco centímetros cúbicos (85 cm3) de la misma con quince centímetros cúbicos (15 cm3) de toluol o del disolvente indicado por el fabricante, si explícitamente este así lo indica.

Los ensayos de estabilidad se deben realizar según la norma MELC 12.77.

700.2.1.1.10 Propiedades de aplicación

La pintura debe ser formulada y procesada específicamente para ser usada como ligante

de microesferas, en tal forma que se produzca el máximo de adhesión, refracción y reflexión.

Cualquier acción capilar de la pintura, debe ser lo suficientemente pequeña para que no produzca cubrimiento total de las esferas de mayor tamaño.

Según la norma MELC 12.03, la pintura debe ser de aplicación fácil y uniforme mediante equipos mecánicos de demarcación y debe tener excelentes propiedades de cubrimiento.

700.2.1.1.11 Finura

La pintura debe ser bien mezclada durante el período de manufactura y los pigmentos que se incorporen adecuadamente pulverizados, con una finura de dispersión de tres (3) unidades Hegman, con base en la NTC 557.

700.2.1.1.12 Contenido de dióxido de titanio

La pintura de color blanco debe tener, como mínimo, un diez por ciento (10 %) de contenido en masa de pigmento de dióxido de titanio, determinado según la NTC 1323. El porcentaje en masa de dióxido de titanio no debe diferir en más de dos por ciento (± 2 %) del valor indicado por el fabricante.

700.2.1.1.13 Contenido en sólidos (materia no volátil)

El porcentaje en volumen o masa de materia no volátil, no puede ser menor de lo indicado en la Tabla 700 - 2. La determinación se debe realizar con base en las normas NTC 1786 y NTC 1227, respectivamente.

El porcentaje en masa de materia no volátil, no puede diferir en más de dos por ciento (± 2 %) del valor indicado por el fabricante.

700.2.1.1.14 Contenido en ligante

Realizado el ensayo según la norma UNE 48238, el porcentaje en masa de ligante no puede diferir en más de dos por ciento (± 2 %) del valor indicado por el fabricante.

Tabla 700 - 2. Contenido mínimo de sólidos

Pintura	Contenido de sólidos en volumen (vol/vol)	Contenido de sólidos en masa (masa/masa)
Base de agua, mínimo (%)	60	70
Base solvente, mínimo (%)	50	60
Sin solvente - Plástico en frío, mínimo (%)	98	-
Norma de ensayo	NTC 1786	NTC 1227

700.2.1.2 Características de la pintura seca

700.2.1.2.1 Aspecto

Después de aplicada la pintura en una lámina de vidrio y dejándola secar durante veinticuatro horas (24 h) a veinte más o menos dos grados Celsius (20 °C \pm 2 °C) y sesenta más o menos cinco por ciento (60 % \pm 5 %) de humedad relativa, debe tener aspecto uniforme, sin granos, ni desigualdades en el tono del color y con brillo satinado (cáscara de huevo).

700.2.1.2.2 Color

Al secarse sobre la superficie de un pavimento, la pintura no se debe oscurecer con la acción del sol, ni presentar decoloración apreciable con el tiempo.

Una película delgada de pintura, esparcida en una placa de vidrio y dejada secar completa mente, no se debe oscurecer ni tampoco decolorar cuando se someta a la acción de los rayos ultravioleta por un período de sesenta minutos (60 min).

700.2.1.2.3 Flexibilidad

La pintura, aplicada en espesor de cero coma cero ocho milímetros (0,08 mm), no debe presentar desprendimiento ni agrietamiento al doblar la muestra sobre un eje

de nueve coma cinco milímetros (9,5 mm) de diámetro, veinticuatro horas (24 h) después de aplicada y mantenida en este lapso de manera horizontal a una temperatura de veinticinco grados Celsius (25 °C) y una humedad relativa de cincuenta por ciento (50 %).

700.2.1.2.4 Adherencia

Al secarse sobre el pavimento de una vía, cuarenta y ocho horas (48 h) después de aplicada, la pintura debe constituir una capa con fuerte adherencia, sin desprenderse cuando se trate de levantar con la uña.

700.2.1.2.5 Sangrado

La relación de contraste debe ser mínimo de cero coma nueve (0,9) y el ensayo se debe hacer de acuerdo con la norma ASTM D868.

700.2.1.2.6 Resistencia a la inmersión en agua

Al preparar una muestra de pintura, con base en la norma ASTM D870 y después de veinticuatro horas (24 h) de inmersión a temperatura ambiente, esta no debe reblandecerse (NTC 5252), ampollarse (NTC 1457-3), arrugarse, perder adhesión (NTC 811), cambiar de color (ASTM D2616) o mostrar cualquier evidencia de deterioro.

700.2.1.2.7 Resistencia a los álcalis

Al aplicar la pintura con un espesor de película seca de cero coma quince milímetros (0,15 mm), sobre una placa de metacrilato prepara-da adecuadamente para tal efecto, se debe poner a secar a temperatura ambiente y, posteriormente, colocarla en una solución saturada de hidróxido de sodio. Después de cuarenta y ocho horas (48 h) de inmersión a una temperatura de cuarenta y cinco grados Celsius (45 °C), no puede presentar cuartea-miento, empollamiento, perforaciones diminutas (punta de alfiler), desprendimientos, arrugas, ni decoloración, de acuerdo con lo indicado en la NTC 1360.

700.2.1.2.8 Resistencia a la abrasión

Se debe efectuar de acuerdo con lo señalado en la NTC 1360, para una capa de pintura húmeda, que debe resistir al secarse, como mínimo, la caída libre de cien decímetros cúbicos (100 dm3) para pinturas a base de agua, ochenta decímetros cúbicos (80 dm3) para pinturas a base solvente y doscientos decímetros cúbicos (200 dm3) para pintura sin solvente - plástico en frío.

700.2.2 Resina termoplástica

700.2.2.1 Color

Blanco o amarillo, definidos por las coordenadas cromáticas del Sistema Colorimétrico Estándar CIE 1931, según la Tabla 700 – 3.

700.2.2.2 Composición

La composición de las resinas termoplásticas blanca y amarilla debe cumplir lo relacionado en la Tabla 700 - 4.

700.2.2.3 Masa unitaria

La masa unitaria del material, después de su fusión, debe ser de dos más o menos cero comas dos kilogramos por litro (2 kg/L \pm 0,2 kg/L). La determinación se debe hacer de acuerdo con la norma ASTM D70.

Factor de luminancia Coordenadas cromáticas Color Demarcación Laboratorio 0,355 0,355 0,305 0,305 0,285 0,325 0,335 Blanco 0,375 > 0,40 > 84 Amarillo 0,545 0,443 0,399 0,455 0,465 0,389 0,431 > 0,20 > 40

Tabla 700 - 3. Coordenadas cromáticas de color para resina termoplástica

Tabla 700 – 4. Composición de resinas termoplásticas blanca y amarilla

Elemento	Color				
Liemento	Blanco	Amarillo			
Ligante	≥ 18 %	≥ 18 %			
Dióxido de titanio	≥ 10 %	-			
Microesferas de vidrio	30 % a 40%	30 % a 40 %			
Carbonato de calcio y rellenos inertes	≤ 42 %	(Nota)			
Pigmento amarillo	0	≥ 4 %			

Nota: la cantidad de pigmento amarillo, carbonato de calcio y rellenos inertes depende del fabricante, siempre que se cumplan los requisitos de la NTC 5867.

700.2.2.4 Punto de ablandamiento

El punto de ablandamiento, determinado por el método de anillo y bola según la norma INV E-712, no debe ser inferior a ciento cinco grados Celsius (105 °C).

700.2.2.5 Resistencia al flujo

La disminución en la altura del cono de material termoplástico, luego de haber sido sometido a una temperatura de sesenta más o menos dos grados Celsius (60 °C \pm 2 °C) durante veinticuatro horas (24 h), no debe ser mayor del dos por ciento (2 %), según la norma UNE 135223.

700.2.2.6 Temperatura de inflamación

El material termoplástico se debe fundir en un baño de aceite a ciento ochenta grados Celsius (180 °C), homogeneizándolo mediante agitación durante al menos dos horas (2 h). Una vez lograda la perfecta homogeneidad y fluidez de la muestra, se debe verter en el vaso abierto de Cleveland de manera que la parte inferior de su menisco quede a un centímetro (1 cm) de la marca de llenado, con el fin de prevenir desbordamientos del material durante el posterior calentamiento en la realización del ensayo. Si se añade un exceso de muestra, se puede eliminar con una espátula o cucharilla en caliente.

Realizado el ensayo en el vaso abierto de Cleveland, acorde con las normas INV E-709, NTC 5009 (UNE 104281 o ASTM D92), la temperatura de inflamación no debe ser inferior a doscientos cincuenta grados Celsius (250 °C).

700.2.2.7 Factor de luminancia

Empleando un observador patrón 2°, una geometría de medida de cuarenta y cinco (45/O) y una fuente de luz de distribución espectral como la dada por el iluminante D65, el valor del factor de luminancia (B) debe ser al menos de cero coma ochenta (0,80) para el color blanco y cero coma cuarenta (0,40) para el color amarillo (norma ASTM E1347).

700.2.2.8 Estabilidad al calor

El valor del factor de luminancia después de mantener el material a una temperatura de doscientos más o menos dos grados Celsius ($200 \, ^{\circ}\text{C} \pm 2 \, ^{\circ}\text{C}$) durante seis horas (6 h) con agitación continua, no debe variar en más de cero coma cero tres (0,03) (norma BS EN 1871:2020).

700.2.2.9 Envejecimiento artificial acelerado

Se preparan dos (2) probetas aplicando una película de material mediante un extendedor adecuado, a un rendimiento aproximado de dos mil seiscientos gramos por metro cuadrado (2 600 g/m²), sobre un recipiente de aluminio de ciento cincuenta milímetros (150 mm) por setenta y cinco milímetros (75 mm), por seiscientos veinticinco milímetros (625 mm), previamente desengrasado con disolvente; se dejan secar durante siete días (7 d), en posición horizontal a una temperatura de veintitrés más o menos cinco grados Celsius (23 °C \pm 5 °C) y cincuenta más o menos cinco por ciento (50 % \pm 5 %) de humedad relativa, protegidas de la radiación solar y del polvo, midiéndose inmediatamente, antes de comenzar este ensayo, su color y factor de luminancia sobre la superficie exterior de la película (norma ASTM G154). Realizado el ensayo durante ciento sesenta y ocho horas (168 h), en ciclos de ocho horas (8 h) de radiación UV de longitud de onda comprendida entre doscientos ochenta nanómetros (280 nm) y trescientos diez y seis nanómetros (316 nm) a

sesenta más O menos tres grados Celsius (60 °C \pm 3 °C) y cuatro horas (4 h) de condensación a cincuenta más o menos dos grados Celsius (50 °C \pm 2 °C), no se debe producir un aumento o una disminución en el factor de luminancia superior a cero coma cero cinco (0,05) respecto del valor original. Por otra parte, el material aplicado después del ensayo y observado dos horas (2 h) después de su aplicación, no debe presentar defecto superficial alguno (norma ASTM D4587).

700.2.2.10 Resistencia a la abrasión

Aplicado el material con un rendimiento tal que permita obtener un espesor de un milímetro (1 mm) y ensayada la muestra con un abrasímetro Taber con ruedas calibradas tipo H-22, con una masa de quinientos gramos (500 g) y en húmedo, no se debe producir una pérdida de masa mayor de doscientos cincuenta miligramos (250 mg) al cabo de cien (100) revoluciones.

700.2.3 Microesfera de vidrio

700.2.3.1 Características

700.2.3.1.1 Naturaleza

La microesfera de vidrio debe ser de tal naturaleza que permita su incorporación a la pintura inmediatamente después de aplicada, de modo que su superficie se pueda adherir firmemente a la película de pintura y su retrorreflexión sea satisfactoria para las líneas y demás marcas viales.

700.2.3.1.2 Microesferas defectuosas

Las microesferas deben ser transparentes, sin color apreciable, suaves, bien redondeadas, no deben contener nubes o aspecto lechoso ni burbujas de aire que puedan afectar su funcionamiento.

El porcentaje ponderado de microesferas de vidrio defectuosa debe ser como máximo del dos por ciento (2 %) para las microesferas cuyo diámetro sea inferior a un milímetro (1 mm) y del treinta por ciento (30 %) para las microesferas cuyo diámetro sea igual o superior a un milímetro (1 mm), siempre que el porcentaje de granos y de partículas extrañas sea como máximo del tres por ciento (3 %) en ambos casos.

Después de someterse a los ensayos de la NTC 2072, las microesferas de vidrio que presenten alteraciones deben considerarse como defectuosas.

700.2.3.1.3 Clasificación

De acuerdo con su tamaño e índice de refracción, las microesferas de vidrio se clasifican en:

Tipo I: de bajo índice de refracción de vidrio reciclado.

Tipo III: de índice de refracción alto.

Tipo IV: de índice de refracción bajo, vidrio fundido directo.

700.2.3.1.4 Composición

Las microesferas de vidrio Tipo I, deben estar fabricadas completamente de fragmentos de vidrio recuperados mediante el proceso de pulido al fuego y contener máximo el sesenta por ciento (60 %) de sílice.

Las microesferas de vidrio Tipo III, deben estar fabricadas en un material tal, que cumpla con los requisitos de la NTC 2072.

Las microesferas de vidrio Tipo IV, deben estar fabricadas mediante el proceso de fundición directa del vidrio con un material tal que observe los requisitos de la NTC 2072. No deben contener residuos visibles de carbón.

700.2.3.1.5 Índice de refracción

El índice de refracción de las microesferas de vidrio se debe determinar usando el método de inmersión en líquido con una fuente de luz blanca, a una temperatura de veinticinco grados Celsius (25 °C).

Las microesferas Tipo I y Tipo IV, deben tener un índice de refracción entre uno coma cincuenta y uno coma cincuenta y cinco (1,50 y 1,55) y para microesferas Tipo III, el índice debe estar en el rango entre uno coma noventa y uno coma noventa y tres (1,90 y 1,93). La medición se debe hacer con acatamiento de la NTC 2072.

700.2.3.1.6 Densidad

La densidad de las microesferas de vidrio Tipo I y Tipo IV debe estar en el rango entre dos comas tres y dos comas seis gramos sobre centímetro cúbico (2,3 g/cm3 y 2,6 g/cm3), y para microesferas de vidrio Tipo III, estar en el rango entre cuatro y cuatro coma cinco gramos sobre centímetro cúbico (4 g/cm y 4,5 g/cm), en observancia de lo especificado en la NTC 2072.

700.2.3.1.7 Granulometría

La granulometría de las microesferas de vidrio debe estar dentro de los límites dados en la Tabla 700 – 5.

Si los documentos del proyecto así lo consideran, o si el constructor propone una granulometría particular para obtener los valores de reflectividad exigidos, se puede emplear una granulometría diferente con la autorización del interventor, previa realización de los análisis de resultados de pruebas de campo y laboratorio.

700.2.3.1.8 Resistencia a la fractura

La microesfera de vidrio debe presentar una resistencia mínima a la fractura, así:

- Para las microesferas de vidrio retenidas en el tamiz de 0,600 mm (nro. 30): ciento setenta y ocho newtons (178 N).
- Para las microesferas que pasen el tamiz de 0,600 mm (nro. 30) y que queden retenidas en el tamiz de 0,425 mm (nro. 40): ciento treinta y tres comas cinco newtons (133,5 N).

700.2.3.1.9 Resistencia a la humedad

Las microesferas deben fluir libremente al ser ensayadas con el siguiente procedimiento: en un vaso de precipitado de quinientos centímetros cúbicos (500 cm3) se colocan cien gramos (100 g) de microesferas de vidrio, luego se adiciona un volumen equivalente de agua

Tabla 700 – 5. Granulometría de las microesferas de vidrio retrorreflectivas, porcentaje en peso que pasa	Tabla 700 – 5. Granulometr	ría de las microesferas de vidrio	retrorreflectivas, p	porcentaje en peso que pasan
---	----------------------------	-----------------------------------	----------------------	------------------------------

7	Tamiz		П	po I		Tipo	o III		Про	IV	
Tamiz U.S. (ASTM	Tamiz ISO 565 R40/3.		uesa- ezclado		ina- zciado	posme	zclado	grue	inde y esa - ezclado		gruesa- zclado
E11- NTC 32	Micrones	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.
12	1 700	-	-	-	-	-	-	100	-	100	-
14	1 400	-	-	-	-	-	-	95	100	-	-
16	1 180	-	-	-	-	100	-	80	95	95	100
18	1 000	-	-	-	-	-	-	10	40	-	-
20	850	100	-	-	-	95	100	0	5	35	70
30	600	80	100	-	-	55	75	-	-	0	5
40	425	-	-	-	-	15	35	-	-	-	-
50	300	18	35	-	-	0	5	-	-	-	-
70	212	-	-	100	-	-	-	-	-	-	-
80	180	-	-	85	100	-	-	-	-	-	-
100	150	0	10	-	-	-	-	-	-	-	-
140	106	-	-	15	55	-	-	-	-	-	-
200	75	0	2	-	-	-	-	-	-	-	-
230	63	-	-	0	10	-	-	-	-	-	-

Nota: las microesferas Tipo I, se clasifican en: Grado A (tamaño grueso para sembrado, posmezclado) y Grado B (tamaño fino premezclado) y las microesferas Tipo IV, se clasifican en: Grado A (Tamaño grueso para sembrado, posmezclado) y Grado B (tamaño fino para sembrado, posmezclado).

agregada de tal forma que la parte superior de las microesferas sea humedecida; se deja en reposo durante cinco minutos (5 min). Después de este periodo, se transfieren las microesferas de vidrio a un vaso de precipitados limpio y seco y se dejan en reposo durante cinco minutos (5 min); pasado este tiempo, se vierten las microesferas en un embudo de doce comas cinco centímetros (12,5 cm) de diámetro con un vástago de diez centímetros (10 cm) de longitud; las microesferas deben fluir

a través del embudo sin interrupción (es permitida una agitación inicial suave para iniciar el flujo), todo ajustado a la NTC 2072.

700.2.3.1.10 Embalaje e identificación

Las microesferas de vidrio se deben empacar en lotes como lo haya especificado el proveedor y en recipientes impermeables de material adecuado que permitan conservar la calidad del producto. En el empaque/envase o en el rótulo adherido firmemente a este, se debe indicar:

- Tipo de microesfera de vidrio.
- Nombre y dirección del fabricante.
- Marca comercial de fábrica y su ubicación.
- Fecha de fabricación.
- Identificación de fabricación (número de lote).
- Indicación de los tratamientos químicos especiales, en caso de tenerlos.
- Cantidad contenida en el saco, en kilogramos.
- Recomendaciones sobre bodegaje y arrume máximo.
- Sugerencias de aplicación.
- Abertura de los tamices superior e inferior nominales de su granulometría.
- Información y advertencias que se requieran por la legislación nacional vigente.
- Marcado adicional según se especifique en el contrato o en la orden de pedido.

700.2.3.1.11 Propiedades de aplicación

En caso de aplicación de la microesfera de vidrio sembrada, la pintura de demarcación de pavimentos se debe aplicar sobre la superficie del pavimento, empleando como mínimo cuatrocientos gramos sobre metro cuadrado (400 g/m2) de microesfera; si la aplicación de las microesferas es premezclada, la proporción de microesfera de vidrio en la pintura para demarcación de pavimentos debe ser de doscientos a doscientos cincuenta gramos sobre litro (200 g/L a 250 g/L) y se debe incorporar antes de la aplicación; las microesferas de vidrio deben fluir libremente de la máquina dosificadora y la retrorreflexión debe ser satisfactoria para la señalización, de acuerdo con el numeral 700.5.2.3.

700.2.4 Óptica compuesta

700.2.4.1 Características

700.2.4.1.1 Naturaleza

La óptica compuesta debe ser de tal naturaleza que permita su incorporación a la pintura inmediatamente después de aplicada, de modo que su superficie se pueda

adherir firmemente a la película de pintura y su retrorreflexión sea satisfactoria para las líneas y demás marcas viales.

700.2.4.1.2 Composición

La óptica compuesta es una partícula retrorreflectante multicomponente conformada por un núcleo pigmentado (típicamente blanco o amarillo), combinado con microesferas de vidrio o microesferas cerámicas muy pequeñas. Los elementos compuestos no deben fabricarse con materiales que se sepa contienen trazas de plomo, cromo o arsénico.

700.2.4.1.3 Índice de refracción

Los elementos compuestos deben tener un índice de refracción entre uno coma nueve y dos coma cuatro (1,9 y 2,4) cuando se prueben utilizando el método de inmersión en aceite líquido, con base en lo establecido en la norma ASTM D7942.

700.2.4.1.4 Granulometría

La granulometría debe estar dada por el fabricante de la óptica compuesta.

700.2.4.1.5 Embalaje e identificación

El material de óptica compuesta se debe empacar en lotes como lo haya especificado el proveedor y en recipientes impermeables de material adecuado que permitan conservar la calidad del producto. En el empaque/envase o en el rótulo adherido firmemente a este, se debe indicar:

- Tipo de elemento.
- Nombre y dirección del fabricante.
- Marca comercial de fábrica y su ubicación.
- Fecha de fabricación.
- Identificación de fabricación (número de lote).
- Indicación de los tratamientos guímicos especiales, en caso de tenerlos.
- Cantidad contenida en el saco, en kilogramos.
- Recomendaciones sobre bodegaje y arrume máximo.
- Sugerencias de aplicación.
- Información y advertencias que se requieran por la legislación nacional vigente.
- Marcado adicional según se especifique en el contrato o en la orden de pedido.

700.2.4.1.6 Propiedades de aplicación

La dosificación mínima de la óptica compuesta debe estar en observancia de las especificaciones del fabricante y en concordancia con la norma ASTM D7942; la óptica compuesta debe fluir libremente de la máquina dosificadora y la

retrorreflexión debe ser satisfactoria para la señalización, según el numeral 700.5.2.3.

700.2.5 Otros tipos de materiales

Los requisitos sobre características, dosificación, instalación o ejecución de los trabajos, control y recibo de otros tipos de materiales como plásticos en frío y cintas preformadas empleados en la demarcación de calles y carreteras, son los establecidos en las normas NTC 4744-1, NTC 4744-2, NTC 4744-3, NTC 4744-4 o normas que apliquen en cada caso específico y deben ser objeto de una especificación particular.

700.3 Equipo

La pintura de líneas y la elaboración de marcas viales, se deben realizar con un equipo que cumpla lo especificado en la NTC 4744-2 en lo referente a este particular y en cada uno de sus puntos.

Se debe disponer, además, de un camión con capacidad igual o superior a cinco toneladas (5 t), adecuado para el transporte de los materia-les hasta los frentes de trabajo, lo mismo que las señales verticales de tránsito, conos y barricadas necesarias para informar a los usuarios sobre el cierre de la vía o para restringir la velocidad de circulación cuando se pinta con vía abierta.

700.4 Ejecución de los trabajos

700.4.1 Selección del material de demarcación por utilizar

Para seleccionar la clase de material de demarcación vial por aplicar, se debe llevar a cabo el procedimiento establecido en la NTC 4744-1, a partir de las características específicas del proyecto (situación de la demarcación vial, textura superficial del pavimento, tipo de vía, ancho de carril y tránsito promedio diario (TPD)).

700.4.2 Preparación de la superficie

Antes de aplicar la demarcación, debe inspeccionarse el pavimento, con el fin de comprobar su estado superficial y posibles defectos existentes, para así determinar el sistema de demarcación por realizar.

La superficie que va a recibir el material de demarcación debe estar seca y libre de polvo, grasa, aceite y otras sustancias extrañas que afecten la adherencia del recubrimiento. La limpieza se debe efectuar por cualquier procedimiento que resulte aceptable para el interventor.

Cabe anotar que los materiales cementantes que impidan la adherencia, deben ser retirados mediante el lavado de la superficie.

Las superficies de hormigón nuevas y los agregados expuestos se deben someter a un tratamiento con materiales compatibles con el producto que se va a aplicar, según las recomendaciones del fabricante, con el fin de garantizar la adherencia, previa eliminación de todos los materiales empleados en el proceso de curado del hormigón.

Para garantizar contraste entre la superficie del hormigón y la demarcación vial, debe emplearse una línea negra adyacente a la de demarcación, de ancho igual a un cuarto (1/4) del ancho de la línea, excepto para marcas viales donde se implementan líneas negras de ancho igual a cincuenta milímetros (50 mm). Esto es válido tanto para aplicaciones por primera vez, como para aplicaciones de repintado.

La demarcación que se aplique debe ser compatible con la superficie de rodadura y debe presentar buena adherencia; en caso contrario, se debe efectuar el tratamiento superficial. Se deben tener en cuenta los criterios de compatibilidad entre los componentes del material de demarcación y la superficie de rodadura, definidos por su fabricante.

Si la superficie presenta defectos o huecos notables, se deben corregir los primeros y rellenar los segundos con materiales de la misma naturaleza que los de la superficie, antes de proceder a la aplicación de la pintura.

Previo al inicio de las operaciones de demarcación, el constructor debe efectuar un cuidado so replanteo que garantice con los medios de demarcación que disponga, una perfecta terminación. En caso de no tener un mejor sistema de referencia, se debe crear una guía de referencia con puntos de treinta milímetros (30 mm) de diámetro espaciados preferible-mente cada cero coma cincuenta metros (0,50 m) y máximo entre cinco y diez metros (5 m y 10 m), en curva y recta respectivamente, los cuales se realizan con la misma pintura con la que se ejecuta el trabajo.

Cuando la demarcación vaya a ser aplicada sobre superficies previamente pintadas o demarcadas, el constructor debe establecer el tipo de tratamiento a ejecutar sobre ellas para garantizar la adherencia con el material nuevo, según lo determinado en la NTC 4744-4, el cual se debe someter a estudio y aceptación por parte del interventor. Si es necesario retirar la pintura o cualquier otro material antiguo, estos deben ser raspados o fresados por un medio aprobado por el interventor, barriéndose a continuación el material desprendido.

En el caso de los pavimentos de concreto, si el factor de luminancia del pavimento fuese superior a cero coma quince (0,15), evaluado de acuerdo con la norma UNE-EN 1436, se debe rebordear la línea por aplicar con un material apropiado de color negro, a ambos lados y con un ancho aproximadamente igual a la mitad (1/2) del correspondiente a la línea de demarcación.

700.4.3 Dosificación

700.4.3.1 Pintura de aplicación en frío

La pintura se debe aplicar longitudinalmente a lo largo de la vía, en un ancho de doce centímetros (12 cm), con un espesor húmedo entre veinte y treinta mils (20 mils – 30 mils), de acuerdo con la clasificación de pinturas establecida en la NTC 1360; en caso de aplicación de la microesfera de vidrio sembrada, la pintura de demarcación de pavimentos se debe aplicar sobre la superficie del pavimento, empleando como mínimo cuatrocientos gramos sobre metro cuadrado (400 g/m2) de microesfera; si la aplicación de las microesferas es premezclada, la proporción de microesfera de vidrio en la pintura para demarcación de pavimentos debe ser de doscientos a doscientos cincuenta gramos sobre litro (200 g/L a 250 g/L) y se debe incorporar antes de la aplicación.

El constructor debe someter a estudio y aprobación del interventor el sistema de aplicación de las microesferas de vidrio; estas pueden aplicarse a presión o por gravedad, teniendo en cuenta que la contracción que se presenta en el ancho de la lámina de la microesfera, cuando se aplica de la segunda forma, no sea menor que el ancho de la línea a demarcar, que la cantidad de microesfera sea homogénea en todo el ancho de la línea, que en ningún momento haya deficiencia en los extremos ni exceso en la parte central de la línea y que, cuando se aplica línea intermiten-te, caigan microesferas en toda la longitud de ella.

Cuando las microesferas se aplican a presión, se debe regular la fuerza del compresor de manera tal que quede la mayor cantidad de este producto atrapada sobre la pintura húmeda.

700.4.3.2 Resina termoplástica

La resina termoplástica se debe aplicar longitudinalmente a lo largo de la vía por extrusión o pulverización, con un espesor seco de dos coma tres milímetros o noventa mils (2,3 mm o 90 mils), para extrusión y de uno coma cinco milímetros o sesenta mils (1,5 mm o 60 mils) por pulverización, en relación con lo establecido en la NTC 4744-4; las microesferas se deben aplicar a razón de cuatrocientos gramos por metro cuadrado (400 g/m2) de resina termoplástica aplicada. Esta dosificación varía proporcionalmente de acuerdo con el ancho de la línea y el espesor de la película.

700.4.4 Plan de Manejo de Tránsito (PMT)

El constructor debe contar con un PMT e instalar todos los elementos de señalización preventiva en la zona de los trabajos, de acuerdo con lo establecido en el Manual de Señalización Vial vigente del Ministerio de Transporte, los cuales deben garantizar la seguridad permanente tanto del personal y de los equipos de construcción, como de los usuarios y transeúntes, durante las veinticuatro horas (24 h) del día.

Para actividades que no impliquen el cierre total de la vía, el interventor debe dar su visto bueno previo a la presentación de un PMT. Para casos que impliquen el cerramiento total de la vía, se deben tramitar los permisos correspondientes ante la autoridad competen-te y se debe presentar el PMT aprobado por el interventor.

Cuando se aplique la demarcación de pintura blanca en líneas de borde de calzada puede requerirse el cierre parcial de la vía, según las condiciones de la aplicación. El vehículo debe ir en el mismo sentido de circulación del tráfico. Una vez aplicada la línea, se debe proteger con conos u otros dispositivos de señalización durante el tiempo de secado, antes de dar al servicio la vía. Para la aplicación de líneas amarillas, se debe cerrar totalmente la vía en calzadas únicas bidireccionales. No se debe efectuar la demarcación en contravía bajo estas condiciones de circulación.

Cuando el volumen de tránsito es superior a mil (> 1 000) vehículos por día y se va a restringir la circulación, se deben programar, en coordinación con la Oficina de Comunicaciones del Instituto Nacional de Vías (INVÍAS), cierres máximos de dos horas (2 h) con intermedios de una hora (1 h) de circulación normal e informar por medios de comunicación hablados y escritos sobre esta situación, tres días (3 d) hábiles antes de iniciar las labores.

700.4.5 Aplicación de los materiales

700.4.5.1 Pintura de aplicación en frío

La pintura y las microesferas de vidrio se deben suministrar ya preparadas y listas para su empleo y no se les debe agregar ni quitar ningún componente en el sitio de los trabajos.

Únicamente pueden ser usados los tipos de disolventes especificados por el fabricante de la pintura de tráfico. Es admisible un máximo de tres por ciento (3 %) en volumen, para facilitar el flujo de la pintura por las pistolas; los disolventes, nunca se deben aplicar con el fin de rendir la pintura.

La pintura se debe aplicar de manera homogénea, de tal forma que no haya excesos ni deficiencias en ningún punto; debe formar una película uniforme, sin arrugas, ampollas o bolsas de aire.

Las microesferas deben dispersarse uniforme-mente en la película de pintura fresca, la cual debe ligarlas para lograr la máxima adhesión y agarre de ellas, pero sin afectar sus grados de refracción y reflexión.

700.4.5.2 Resina termoplástica

La resina termoplástica y las microesferas de vidrio, se deben suministrar ya preparadas y listas para su empleo y no se les debe agregar ni quitar ningún componente en el sitio de los trabajos.

La resina termoplástica se debe aplicar de manera homogénea, de forma que no haya excesos ni deficiencias en ningún punto, formando una película uniforme sin arrugas, ampollas o bolsas de aire.

Las microesferas de vidrio se deben dispersar uniformemente sobre la película de resina en estado líquido, la cual debe ligarlas para lograr la máxima adhesión y agarre de ellas, pero sin afectar sus grados de refracción y reflexión.

700.4.5.3 Consideraciones adicionales

Toda demarcación no aceptada por el interventor en cuanto a acabado, alineamiento longitudinal y reflectividad, debe ser corregida o removida por el constructor bajo su propia cuenta y riesgo, mediante fresado u otro procedimiento apropiado que no afecte la estructura del pavimento.

En ningún evento se debe utilizar pintura negra de tráfico para tapar la demarcación defectuosa.

Igual tratamiento se debe dar a toda la demarcación colocada en forma diferente a los planos o las instrucciones del interventor y que a criterio de este, pueda generar confusión o inseguridad a los usuarios de la vía.

El constructor debe remover bajo su propia cuenta y riesgo toda pintura, resina termoplástica o cualquier material utilizado que presente problemas de adherencia con la superficie.

700.4.6 Limitaciones en la ejecución

Bajo condiciones de lluvia no se debe aplicar la pintura para demarcación de pavimentos, ni cuando la temperatura ambiente a la sombra sea inferior a cinco grados Celsius (5 °C) o superior a cuarenta grados Celsius (40 °C) y según lo especifique el fabricante del producto. Tampoco se debe aplicar el material cuando el viento sea mayor a veinte kilómetros por hora (20 km/h) o la temperatura de la superficie por demarcar sea superior a cuarenta y ocho grados Celsius (48 °C), a no ser que el fabricante de la pintura recomiende su aplicación a esta temperatura en la ficha técnica del producto.

En el momento de la aplicación de la pintura para demarcación, la humedad relativa no puede ser mayor al ochenta por ciento (80 %) y la temperatura de la superficie debe ser mínimo diez grados Celsius (10 °C) por encima del punto de rocío, con el fin de que el vapor de agua del aire no afecte la calidad de la pintura. En todo caso, se debe seguir las recomendaciones de temperaturas definidas por el fabricante del producto.

Se debe verificar la humedad del pavimento con ayuda de equipos de control (menor del cinco por ciento (5 %) de la humedad) o métodos manuales; por ejemplo, para

determinar la presencia de agua, se pega sobre la superficie del pavimento una película de cuatrocientos centímetros cuadrados (400 cm2) de plástico, empleando cinta de enmascarar, sellando todos los bordes. Luego de treinta minutos (30 min), se examina la presencia de agua condensada sobre el material o la superficie del pavimento. Si se detecta la presencia de agua condensada no se debe aplicar la pintura para demarcación.

No se debe aplicar termoplástico bajo condiciones de lluvia ni cuando la temperatura ambiente sea inferior a doce grados Celsius (12 °C) o la temperatura del pavimento sea inferior a nueve grados Celsius (9 °C).

La temperatura de calentamiento del termo-plástico y el número de recalentamientos tienen topes máximos, los cuales deben estar de acuerdo con las especificaciones definidas por el fabricante.

Cuando el termoplástico se aplique sobre concreto hidráulico o pavimento asfáltico, con agregados expuestos, se recomienda aplicar un adhesivo (cuando se requiera esta aplicación, el fabricante debe definir su uso) para mejorar el enlace de unión entre el pavimento y el termoplástico.

No debe aplicarse termoplástico cuando exista humedad en el pavimento. Para determinar la presencia de humedad, se coloca sobre la superficie del pavimento una película de cuatrocientos centímetros cuadrados (400 cm2) de plástico resistente a temperatura; posteriormente, se debe fundir el termoplástico sobre esta y luego examinar la presencia de agua condensada sobre el material o la superficie del pavimento. De detectarse la presencia de agua condensada, no se debe aplicar el material. 700.4.7 Apertura al tránsito

Las superficies demarcadas deben ser protegidas de la acción de cualquier tipo de tránsito hasta el instante en que el recubrimiento se encuentre perfectamente seco. Dicho instante debe ser definido por el interventor.

700.4.8 Manejo ambiental

Adicional a los aspectos generales indicados en el artículo 106, Aspectos ambientales, todas las labores requeridas para la aplicación de pintura en líneas de demarcación y marcas viales, se deben realizar teniendo en cuenta lo establecido en las normas y disposiciones vigentes sobre la conservación del ambiente y los recursos naturales.

Todas las actividades que se ejecuten en cumplimiento a esta especificación, deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas actividades se deben incluir en los costos del proyecto; por tanto, no son objeto de reconocimiento directo en el contrato.

700.5 Condiciones para el recibo de los trabajos

700.5.1 Controles

- Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales:
- Verificar el estado y funcionamiento de todo el equipo utilizado por el constructor.
- Revisar la instalación de la señalización temporal para informar del cierre parcial de la vía o de la restricción de la velocidad de circulación, cuando la demarcación se hace con vía abierta.
- Comprobar que los materiales cumplan los requisitos de calidad exigidos en el numeral 700.2.
- Corroborar que los materiales se apliquen uniformemente y en los sitios previstos.
- Supervisar la adhesión, el acabado y la reflectividad de la pintura colocada.
- Examinar como mínimo: (i) el alineamiento de las marcas viales cada dos kilómetros (2 km); (ii) el ancho de la línea cada quinientos metros (500 m), (iii) la separación entre líneas cada cinco kilómetros (5 km) (iv) la variación del espaciamiento de las líneas con o sin demarcación cada cinco kilómetros (5 km), (v) el inicio y la finalización de zonas con o sin distancia de visibilidad para realizar la maniobra de adelantamiento y
- (vi) el ancho de carriles cada cinco kilómetros (5 km); o en los sitios que lo considere pertinente el interventor.
- Inspeccionar el cumplimiento sobre las distancias de prohibido adelantamiento, en curvas verticales y horizontales y en zonas con esta restricción en tramo recto, donde la distancia de visibilidad de adelantamiento sea mayor que la distancia de visibilidad del sector. Para ello, se debe indicar claramente al constructor las velocidades de operación en cada uno de los sectores, para poder hacer estas mediciones de acuerdo con lo expresado en el Manual de Señalización Vial vigente del Ministerio de Transporte.
- Realizar la medición del espesor de película húmeda real, sin microesfera y el espesor de película seca y verificar su cumplimiento respecto de lo establecido en la NTC 4744-4.
- Verificar la homogeneidad y retrorreflectividad según lo definido en la NTC 4744-4.

El interventor debe exigir al constructor, el certificado de conformidad expedido por el Organismo Nacional de Acreditación de Colombia (ONAC), o por un organismo de certificación de productos del país de origen, debidamente acreditado para certificar dichos materiales, aportado por las compañías fabricantes o lo que establezca la Superintendencia de Industria y Comercio en materia de evaluación de la conformidad.

El interventor debe medir para efectos de pago, el trabajo correctamente ejecutado de acuerdo con los planos, esta especificación y las instrucciones de interventor.

700.5.2 Condiciones específicas para el recibo y tolerancias

700.5.2.1 Acabado

700.5.2.1.1 Pintura de aplicación en frío

Las líneas deben ser razonablemente uniformes y libres de irregularidades. La uniformidad se debe determinar tomando muestras sobre láminas galvanizadas rectangulares de calibre nro. 16 de diez centímetros (10 cm) por quince centímetros (15 cm), las cuales se colocan cada quinientos metros (500 m). Cuando se hace la toma de la muestra, se debe interrumpir la pistola de aplicación de microesfera. Inmediatamente, estando húmeda la pintura, con una galga (micrómetro para medir espeso-res húmedos de pintura) se debe medir el espesor aplicado.

Las cantidades de pintura y de microesferas aplicadas deben determinarse tomando muestras sobre láminas galvanizadas rectan gulares de calibre nro. 16 de quince centímetros (15 cm) por veinticinco centímetros (25 cm), las cuales se deben colocar cada cinco mil metros (5 000 m).

La muestra de pintura con microesferas, seca, se debe colocar dentro de un disolvente que deshaga la pintura. Al tamizar el material disuelto en el tamiz de 0,075 mm (nro. 200), deben quedar atrapadas las microesferas aplicadas. Conociendo la masa de la lámina galvanizada, la masa total de esta con pintura y microesferas, la densidad, el contenido de sólidos y el área de pintura en la lámina, se debe determinar la cantidad real de pintura y de microesferas aplicadas en las líneas o marcas viales.

La toma de la muestra se debe realizar cuando el vehículo esté aplicando pintura y microesferas de vidrio a la vez. En seguida, se debe tomar una muestra de cero coma cinco litros (0,5 L) de la pintura que está saliendo por la pistola. De la muestra de pintura líquida se debe determinar en el laboratorio, la densidad y el contenido de sólidos.

700.5.2.1.2 Resinas termoplásticas

Las cantidades y uniformidad de termoplástico y microesferas aplicados se deben determinar tomando muestras sobre láminas galvaniza-das rectangulares de calibre nro. 16 de quince centímetros (15 cm) por veinticinco centímetros (25 cm), las cuales se deben colocar cada cinco mil metros (5 000 m).

También, se deben atender los demás requisitos establecidos en este artículo y los especificados en la NTC 4744-4.

700.5.2.2 Dimensiones y tolerancias

- Las franjas que correspondan a las denominadas marcas longitudinales en el Manual de Señalización Vial vigente del Ministerio de Transporte, deben tener un ancho mínimo de doce centímetros (12 cm).
- Las demás marcas deben tener las dimensiones y separaciones que se indiquen en los planos del proyecto, las cuales deben estar de acuerdo con lo que indique el Manual de Señalización Vial vigente del Ministerio de Transporte.
- El espesor mínimo de película seca de pintura debe ser de: nueve mils (9 mils) para pintura líquida alquídica y pintura líquida acrílica base solvente o base agua, doce mils (12 mils) para pintura líquida acrílica base agua alto espesor, noventa mils (90 mils) para termoplástico por extrusión con superficie plana, sesenta mils (60 mils) para termoplástico por pulverización, veintidós mils (22 mils) para plástico en frio por pulverización y cuarenta mils (40 mils) para plástico de aplicación en frío (extruible) con superficie plana.
- Las longitudes de segmentos y espacios tienen una relación de longitudes de tres a cinco (3 a 5). Son de cuatro coma cinco metros (4,5 m) y siete coma cinco metros (7,5 m), respectivamente, para velocidades mayores a sesenta kilómetros por hora (60 km/h) y de tres metros (3 m) y cinco metros (5 m), respectivamente, para velocidades menores o iguales a sesenta kilómetros por hora (60 km/h); para ciclo-vías la relación entre las longitudes de segmentos y espacios debe ser de uno a dos (1 a 2), el largo del segmento será de un metro (1 m) y el largo de la brecha o espacio de dos metros (2 m).
- La desviación máxima permitida (flecha), en cualquier tramo en línea recta, debe ser de cinco centímetros (5 cm) en una distancia de cincuenta metros (50 m).
- Se deben atender las demás disposiciones del Manual de Señalización Vial vigente del Ministerio de Transporte y las de la NTC 4744-4.
- El plan de calidad y el plan de inspección, medición y ensayo son de obligatorio cumplimiento tal como se encuentra expresado en el numeral 103.2 del artículo 103, Responsabilidades especiales del constructor.

700.5.2.3 Retrorreflectividad

A las líneas y marcas con pintura o termoplástico, una vez aplicadas, se les debe medir la retrorreflectividad y se deben obtener valores mayores o iguales a doscientos (200) milicandelas/m2/lux para pintura amarilla y doscientos cincuenta (250) milicandelas/m2/lux para pintura blanca en cualquier sitio de la vía demarcada, en relación directa con lo establecido en la NTC 4744-3.

Nota: Los valores de retrorreflexión en seco, húmedo y lluvia, al igual que los métodos de ensayo, deben cumplir con los requisitos mínimos establecidos en la norma UNE-EN 1436.

Estos valores son aplicables para vías con tránsito promedio diario menor o igual a tres mil (TPD \leq 3 000) vehículos, siempre y cuando se cuente con un sistema de limpieza y mantenimiento adecuado que no deteriore la demarcación. Para

volúmenes de tránsito mayores, los valores de reflectancia deben ser los indicados en los documentos del proyecto.

Se debe garantizar la retrorreflectividad a largo plazo o luego de seis (6) meses para la pintura o termoplástico. Al efecto, se deben obtener valores precisados en la NTC 4744-3.

La toma de datos se debe realizar por cada kilómetro de obra ejecutada en tres (3) sitios y por cada línea. Un dato obtenido debe ser el promedio de tres (3) medidas realizadas en la misma línea dentro de una distancia de tres metros (3 m); las medidas individuales deben estar dentro del diez por ciento (10 %) del promedio de las mismas o, de lo contrario, se deben tomar dos (2) o más lecturas adicionales para promediarlas y verificar si el promedio está o no dentro de los rangos especificados.

Debe tener en cuenta que todas las medidas se deben tomar sobre superficies limpias y secas y de acuerdo con las recomendaciones del fabricante del equipo con que se realizan las mediciones, el cual debe suministrar los datos directamente en las unidades anotadas anteriormente.

En caso de que se obtengan valores por debajo del mínimo especificado, se deben hacer mediciones cada doscientos metros (200 m) para identificar la zona no conforme, y así el constructor asuma las acciones correctivas que corren a sus expensas.

En las normas NTC 5867, Materiales para de marcación de pavimentos termoplástico retrorreflectiva blanco y amarillo (forma solida) y la NTC 5868, Materiales para de marcación de pavimentos, laminado elastoplástico (cintas preformadas) para señalización. Requisitos y Métodos de Ensayo, se especifican las características y requisitos de estos materiales para la demarcación de pavimentos.

Todas las deficiencias que excedan las tolerancias mencionadas deben ser corregidas por el constructor bajo su propia cuenta y riesgo, previa aprobación del interventor.

700.5.2.4 Resistencia al deslizamiento

Para marcas viales, el valor de resistencia al deslizamiento, expresado en unidades SRT, debe ser mayor o igual a cuarenta y cinco (≥ 45), conforme al método de ensayo especificado en las normas INV E-792 y NTC 5129.

700.6 Medida

700.6.1 Líneas de demarcación

La unidad de medida de las líneas de demarcación debe ser el metro (m) aproximado al decímetro (dm), de línea de demarcación continua o discontinua efectivamente

aplicada sobre la superficie, de acuerdo con los planos del proyecto y esta especificación, aprobadas por el interventor. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

700.6.2 Marcas viales

La unidad de medida para las demás marcas viales debe ser el metro cuadrado (m2), aproximado a la centésima de metro cuadrado, de superficie realmente pintada, medida en el sitio

terreno y aceptada por el interventor. El resultado de la medida se debe reportar con la aproximación establecida, empleando el método de redondeo de la norma INV E-823.

No se debe medir ninguna línea de demarcación o marca vial colocada por fuera de los límites autorizados por el interventor.

700.7 Forma de pago

El pago de las líneas de demarcación y demás marcas viales se debe hacer al respectivo precio unitario del contrato, por todo trabajo ejecutado de acuerdo con esta especificación y aprobada por el interventor.

El precio unitario debe cubrir todos los costos de suministro, transporte, almacenamiento, desperdicios y aplicación de la pintura en frío o resina termoplástica y las microesferas reflectivas u otros materiales a que haya lugar; todos los trabajos e insumos necesarios para prepa-rar las superficies donde se aplica el material de demarcación utilizado, incluyendo el imprimante si fuera necesario; la señalización preventiva de la vía y el control del tránsito durante la ejecución de los trabajos y el lapso posterior que fijen el interventor para la apertura al tránsito y, en general, todo costo relacionado con la correcta ejecución del trabajo especificado.

El precio unitario debe cubrir, también, los costos de administración, imprevistos y la utilidad del constructor.

700.8 Ítem de pago

Ítem	Descripción	Unidad	
700. ⁻	Línea de demarcación con pintura en frío	Metro (m)	
700.2	Linea de demarcación con resina termoplástica	Metro (m)	
700.3	Marca vial con pintura en frío	Metro cuadrado (m²)	
700.4	Marca vial con resina termoplástica	Metro cuadrado (m²)	

5.3. TACHA REFLECTIVA

701.1 Descripción

Este trabajo consiste en el suministro, almacenamiento, transporte y colocación de tachas reflectivas en la superficie del pavimento, utilizando adhesivos adecuados para que resistan el tránsito automotor sin desprender-se, de acuerdo con esta especificación, los planos del proyecto y las instrucciones del interventor.

701.2 Materiales

701.2.1 Tachas

Las tachas reflejantes instaladas sobre el pavimento deben estar elaboradas con mate-riales metálicos, plásticos o similares de alta resistencia y el material reflectivo debe ser vidrio o acrílico, de forma prismática, o esférica. Pueden ser retrorreflectivas en uno (1) o dos (2) sentidos y ser iluminadas internamente con luz continua, nunca destellante. Algunas tachas pueden ser retrorreflectivas desde cualquier dirección. En casos de poca iluminación o en lugares con presencia de niebla, se pueden colocar tachas solares si los documentos del proyecto así lo indican.

Cuando se usen en vías unidireccionales pueden ser retrorreflectivas o iluminadas solo en el sentido del tránsito y en vías bidireccionales deben ser retrorreflectivas o iluminadas en ambos sentidos.

No se debe permitir el suministro e instalación de tachas cuyo periodo de tiempo, comprendido entre su fabricación y su instalación exceda de doce (12) meses, independiente-mente de sus condiciones de almacenamiento.

Las tachas deben cumplir, además, los siguientes requisitos generales:

701.2.1.1 Clasificación

Las tachas retrorreflectivas se deben clasificar por el tipo, color y características de sus superficies de acuerdo con las siguientes clasificaciones (no se deben aceptar otras diferentes a las indicadas aquí). Esta clasificación va de acuerdo con el Manual de Señalización Vial del Ministerio de Transporte y la NTC 4745, vigentes.

701.2.1.1.1 Tipos de tachas retrorreflectivas

Tipo A: tacha retrorreflectiva bidireccional de un (1) solo color.

Tipo B: tacha retrorreflectiva unidireccional de un (1) solo color.

Tipo E: tacha retrorreflectiva bidireccional, de dos (2) colores.

701.2.1.1.2 Color de las tachas retrorreflectivas

Los elementos retrorreflectivos de las tachas deben ser blancos para complementar una demarcación plana blanca, amarillos para complementar una demarcación amarilla, azules para aproximaciones a hospitales, clínicas y centros de atención médica, rojos, para indicar al conductor que va en contra del sentido del tránsito o el acceso a una rampa de emergencia y verdes, utilizadas de forma temporal para obra, queda a criterio del diseñador la utilización de estas.

La clasificación de colores es la siguiente:

B: blanco.

A: amarillo.

R: rojo.

AZ: azul.

V: verde.

La Tabla 701 - 1 establece el tipo y color de la tacha a utilizar en función de la línea de demarcación que complementan.

Tabla 701 - 1. Clasificación de las tachas reflectivas en función del tipo de linea de demarcación vial.

Tipo de línea	Patrón de línea	Tipo de Tacha reflectiva	Color tacha	
Líneas "centrales" que	Segmentadas	A	Amarillo	
separan flujos	continuas	A	Amarillo	
opuestos (Nota 1)	dobles	A	Amarillo	
Líneas que conoran carriles	Commontodos	BoE	Blanco o Blanco/Rojo	
Líneas que separan carriles (Nota 2)	Segmentadas continuas	BoE	Blanco o Blanco/Rojo (Nota 4)	
Líneas de borde de	Segmentadas	N/A		
pavimento. (Nota 3)	continuas	AoB	Blanco o Amarillo	
Líneas canalizadoras	Continuas	В	Blanca	
Achurado	-	Α	Blanco o Amarillo	
Demarcación divergente y convergente	-	E	Blanco/Rojo	

Nota 1: este tipo de línea corresponde a vías de una calzada con doble sentido de circulación y/o a vías de dos (2) calzadas sin separador central.

Nota 2: este tipo de línea se utiliza para delimitar los carriles que conducen el tránsito en una misma dirección.

Nota 3: se considera línea de borde de pavimento a la línea adyacente a un separador central y/o a las líneas de borde de calzada.

Nota 4: la justificación del uso de tachas reflectivas de color blanco/rojo y/o verde, debe ser soportado por un estudio realizado por un especialista en vías y/o tránsito y aprobado por la interventoría.

701.2.1.1.3 Características de superficie

Designación H: tacha con superficie de lente dura, resistente a la abrasión.

Designación F: tacha con resistencia longitudinal suficiente para la aplicación en pavimentos de concreto asfaltico flexible.

La clasificación debe incluir: tipo, color y condición de superficie (este último solo para el caso de tachas designadas como H), en el orden presentado en los numerales anteriores.

Por ejemplo, ERBH, es una tacha bidireccional, roja y blanca, con superficie resistente a la abrasión.

Los documentos del proyecto deben indicar el tipo de tachas por utilizar.

701.2.1.2 Materiales y dimensiones

Debe estar constituido por materiales con resistencia adecuada al agua, las sustancias químicas y los rayos ultravioleta indicados para el uso previsto.

- La altura de la tacha no debe ser superior a veinte comas tres milímetros (20,3 mm).
- El ancho de la tacha no debe ser superior a ciento treinta milímetros (130,0 mm).

- El ángulo entre la superficie de la tacha y la base no debe ser superior a cuarenta y cinco grados (45°); si el ángulo entre la superficie de la tacha y la base es superior a cuarenta y cinco grados (45°), o si el frente de la tacha tiene protuberancias superiores a un milímetro (1 mm) entonces, como parte de la aceptación de tipo, la tacha se debe someter a un ensayo de seis (6) meses en la vía durante la época del año en que las condiciones climáticas y del tráfico son más críticas para la facilidad de limpieza. Esta característica se debe determinar midiendo al coeficiente de intensidad luminosa antes y después de lavar el lente de la tacha.
- La base de la tacha debe estar significativamente libre de grasa, esmaltes y sustancias que puedan reducir su capacidad adhesiva.
- La base de la tacha debe ser plana en un espacio de uno coma tres milímetros (1,3 mm). Si la base de la tacha está configurada, las superficies sobresalientes de las configuraciones no se deben desviar más de uno coma tres milímetros (1,3 mm) respecto de un plano.

Se puede aceptar otro tipo de construcción, siempre y cuando llene los requisitos de desempeño de esta especificación.

701.2.1.3 Retrorreflectividad

El coeficiente de intensidad luminosa, medido de conformidad con el numeral 6.2.1 de la NTC 4745, no debe ser menor a los valores establecidos en la Tabla 701 - 2.

Entrada	Ángulo		Valor mínimo R ₁ milicandela por lux (mcd/lx)						
ángulo (β2)	observación (a)	Blanco	Amarillo	Rojo	Verde	Azul			
0°	0,2°	279	167	70	93	26			
+20° / -20°	0,2°	112	67	28	37	10			
Entrada	Ángulo	Valor mínimo R ₁ candelas por ple candela (cd/ple cd)				ple cd)			
ángulo (β2)	observación (a)	Blanco	Amarillo	Rojo	Verde	Azul			
0°	0,2°	3,0	1,8	0,75	1,0	0,28			
+20° / -20°	0.2°	12	0.72	0.30	0.4	0.11			

Tabla 701 - 2. Coeficiente de intensidad luminosa (R,)

Nota: el ángulo de componente de entrada (β ,) y el ángulo de rotación (ϵ) son cero grados (0°).

701.2.1.4 Resistencia a la flexión

Cuando se ensayen de acuerdo con el numeral 9.2.1 de la NTC 4745, las tachas deben soportar una carga de novecientos nueve kilogramos (909 kg) sin romperse y sin sufrir deformación mayor a tres coma tres milímetros (3,3 mm).

701.2.1.5 Resistencia a la compresión

Cuando se ensayen de acuerdo con el numeral 9.2.2, de la NTC 4745, las tachas deben soportar una carga de dos mil setecientos

veintisiete kilogramos (2 727 kg) sin romperse y sin sufrir deformación mayor a tres comas tres milímetros (3,3 mm).

701.2.1.6 Color

Cuando el retrorreflector es iluminado por una fuente estándar CIE y cuando se mide según se indica en el numeral 9.3 de la NTC 4745, el color de la luz retrorreflejada debe estar dentro de las gamas de color limitadas por las siguientes coordenadas de la Tabla 701 – 3 y son mostrados en la figura 1 de la NTC 4745, correspondiente a la gama de colores.

Color		Puntos						
		1	2	3	4	5	6	
Blanco	Х	0,310	0,453	0,500	0,500	0,440	0,310	
ыалсо	Υ	0,348	0,440	0,440	0,380	0,380	0,283	
Amarillo	Х	0,545	0,559	0,609	0,597	-	-	
Amaniio	Y	0,424	0,439	0,390	0,390	-	-	
D. I.	Х	0,650	0,668	0,734	0,721	-	-	
Rojo	Υ	0 330	0 330	0 265	0 259	-	-	
Azul	Х	0,039	0,160	0,160	0,188	0,088	-	
AZUI	Υ	0,320	0,320	0,240	0,218	0,142	-	
Verde	Х	0,009	0,288	0,209	0,012	-	-	
verde	Υ	0,733	0,520	0,395	0,494	-	-	

Tabla 701 - 3. Coordenadas de los puntos de esquinas

701.2.1.7.3 Abrasión

Se debe realizar, adicionalmente, el ensayo de resistencia a la abrasión, de acuerdo con el numeral 9.5 de la NTC 4745; después de este ensayo, se debe medir nuevamente el coeficiente de intensidad luminosa, el cual debe mantenerse dentro de los valores establecidos en la Tabla 701 – 2. La falla de más de un elemento debe ser causa para rechazar el lote completo.

701.2.1.8 Muestreo

Para tachas que no son resistentes a la abrasión, el tamaño de muestra debe ser de veinte (20) tachas por cada lote de diez mil unidades (10 000 u) o menos, y cuarenta (40) tachas para lotes mayores de diez mil unidades (10 000 u). Para tachas con una superficie resistente a la abrasión, son necesarias diez unidades (10 u) adicionales. El tamaño del lote no debe exceder de veinticinco mil unidades (25 000 u).

701.2.1.9 Empaque

Las tachas se deben distribuir en empaques adecuados para garantizar su protección y asegurar una entrega en perfectas condiciones.

Los empaques para despacho, deben marcar-se con el nombre y la dirección del fabricante, el tipo, el color, la cantidad contenida y el número de identificación del lote.

701.2.2 Adhesivo

El material destinado a adherir la tacha con el pavimento debe presentar unas características generales garantizadas por el fabricante, teniendo en cuenta el tipo y el estado del pavimento; además, el fabricante debe indicar la dosificación con la cual ha de aplicarse el producto. Se puede emplear material bituminoso y termoplástico o pegante epóxico de dos (2) o más componentes.

El adhesivo debe asegurar un tiempo de secado que no sobrepase veinticinco minutos (25 min) y que las tachas no sufran desplazamientos o movimientos al ser golpeadas por los vehículos después de transcurridas doce horas (12 h) desde su colocación.

El adhesivo no se puede emplear sin el visto bueno del interventor.

Para la instalación de las tachas sobre el pavimento, el adhesivo a aplicar debe cumplir con lo definido en la NTC 4745.

701.3 Equipo

Se debe disponer del equipo necesario para preparar la superficie del pavimento, para el transporte y colocación de las tachas, así como para la limpieza de la superficie luego de terminados los trabajos y para la recolección y retiro de los desperdicios.

701.4 Ejecución de los trabajos

701.4.1 Localización

El constructor debe localizar las marcas sobre el pavimento de acuerdo con los planos de señalización, el Manual de Señalización Vial vigente del Ministerio de Transporte y las instrucciones del interventor.

La distancia de colocación de las tachas debe determinarse en función de la velocidad de operación del tramo de la vía; no debe generar contaminación visual o incomodidad al usuario que observa una o más tachas por cada segundo de recorrido.

El espaciamiento entre las tachas de cualquier vía es función del patrón utilizado para la línea central segmentada en la vía y, según la vía, este patrón puede variar

entre doce, ocho y tres metros (12 m, 8 m y 3 m), dependiendo de la velocidad, en observancia del Manual de Señalización Vial vigente del Ministerio de Transporte.

En tramos con velocidad superior a sesenta kilómetros por hora (60 km/h), las tachas se deben instalar máximo cada veinticuatro metros (24 m) y, en tramos con velocidad menor o igual a sesenta kilómetros por hora (60 km/h), las tachas se deben instalar máximo cada dieciséis metros (16 m).

En ciclovías, las tachas se deben instalar máximo cada seis metros (6 m).

En curvas, dependiendo del radio de ellas, tanto en el eje como lateralmente, las tachas se deben ubicar como se indica en la Tabla 701 – 4.

En vías bidireccionales y una sola calzada de circulación, deben emplearse tachas con doble cara retrorreflectiva, de color amarillo y blanco, tanto en líneas centrales como laterales.

Radio de la curva (m)	Distancia máxima entre tachas (m)
Menos de 20	6
Entre 20 y 49	8
Entre 50 y 99	12
Entre 100 y 199	18
Mayor a 200	24

Tabla 701 - 4. Distancia máxima entre tachas ubicadas en curvas

Sobre "permitidos" o "prohibidos de adelantamiento", la instalación de las tachas en el eje debe localizarse en el centro del espacio sin pintura. En tramos con líneas de demarcación intermitentes, no se deben instalar tachas al inicio o al final de cada segmento sino en el tramo del centro sin pintar. Al repintar, se debe tener cuidado de no pintar las mismas.

En vías multicarriles, o calzadas con una sola dirección, se deben emplear tachas unidireccionales blancas o bidireccionales blanca-roja; en el último caso, el color blanco guía a los conductores que circulan correctamente. Nunca se debe emplear un conjunto de tachas como reductores de velocidad; en agujas (obstáculos), la distancia máxima entre tachas debe ser de dos metros (2 m) o la que se indique en los documentos del proyecto.

Si durante el planeamiento previo a la instalación se determina que, como resultado del espaciamiento típico de tachas, una tacha debe ser puesta en un sitio con defectos de superficie de pavimento, en una junta de construcción del pavimento o dentro de la intersección con una entrada domiciliaria o calle pública, el sitio propuesto se debe relocalizar longitudinalmente a suficiente distancia, en un punto aprobado por el interventor.

La distancia de relocalización de la tacha afectada no puede exceder el diez por ciento (10 %) del espaciamiento típico.

Donde fuere necesario relocalizar la tacha a una distancia mayor del diez por ciento (10 %) de espaciamiento típico, la tacha afectada se debe suprimir. La cara reflectora de la tacha debe estar perpendicular a una línea paralela a la línea central de la vía.

701.4.2 Preparación de la superficie

Antes de proceder a la aplicación de las tachas, si la superficie presenta defectos o huecos notables, se deben corregir los prime-ros y rellenar los segundos con materiales de la misma naturaleza de la superficie.

Los sitios elegidos para la colocación de las tachas se deben limpiar de polvo, barro, grasa, suciedad y cualquier otro elemento extraño, cuya presencia atente contra la correcta adhesión de la tacha al pavimento. Para ello, se puede emplear cualquier procedimiento aprobado por el interventor y que sea ambientalmente permitido.

Cuando las tachas se instalen sobre un pavimento de concreto hidráulico, se deben eliminar de la zona de fijación todos aquellos materiales utilizados en el proceso de curado del concreto que aún se encuentran sobre la superficie.

701.4.3 Colocación de las tachas

Las tachas se deben colocar en los sitios previamente localizados, fijándolas con el adhesivo indicado en el numeral 701.2.2. Este se debe preparar de acuerdo con las instrucciones del fabricante y su cantidad a utilizar

depende del estado de la superficie del pavimento.

Si se emplea un adhesivo epóxico, se recomienda no preparar más cantidad de adhesivo de la que se pueda utilizar en diez minutos (10 min).

El adhesivo se debe aplicar con una espátula a la base de la tacha o a la superficie del pavimento, en una cantidad tal que cubra toda la superficie de contacto sin presentar vacíos, más un leve exceso.

Las tachas se deben colocar tan pronto como sea posible, con un procedimiento que asegure que, respecto del eje de la vía, no sufra desviaciones mayores a dos milímetros (2 mm), medidos en los extremos. Una vez instalada la tacha, se debe presionar hasta que el pegamento salga por los bordes. Todo exceso de adhesivo se debe limpiar y retirar inmediatamente. No se debe aceptar, por ningún motivo, que alguna traza de pegamento quede sobre la cara reflectante de la tacha.

701.4.4 Plan de Manejo de Tránsito (PMT)

El constructor debe contar con un PMT e instalar todos los elementos de señalización preventiva en la zona de los trabajos, de acuerdo con lo establecido en el Manual de Señalización Vial vigente del Ministerio de Transporte, los cuales deben garantizar la seguridad permanente tanto del personal y de los equipos de construcción, como de los usuarios y transeúntes, durante las veinticuatro horas (24 h) del día.

Para actividades que no impliquen el cierre total de la vía, el interventor debe dar su visto bueno previo a la presentación de un PMT. Para casos que impliquen el cerramiento total de la vía, se deben tramitar los permisos correspondientes ante la autoridad competen-te y se debe presentar el PMT aprobado por el interventor.

Las tachas deben ser protegidas del tránsito o de cualquier golpe por el tiempo mínimo indicado por el fabricante de acuerdo con el tipo de material utilizado como adhesivo. Además, durante el período que dure el proceso de endurecimiento del pegamento, se deben tomar todas las precauciones necesarias para evitar que el tránsito pase sobre las tachas. Para esto, el constructor debe colocar elementos de señalización como conos o barreras para asegurar el procedimiento.

701.4.5 Limpieza final

Una vez colocadas las tachas, el constructor debe retirar del sitio de los trabajos todos los equipos, señales y materiales sobrantes, disponiéndolos en lugares aprobados por el interventor.

701.4.6 Limitaciones en la instalación

No se debe permitir la colocación de tachas en las siguientes condiciones:

- Si existe lluvia o humedad sobre el pavimento.
- Cuando la temperatura del pavimento o la del aire esté a:
- Cero grados Celsius (0 °C) o menos, en caso de utilizar adhesivo epóxico de fijación rápida.
- Diez grados Celsius (10 °C) o menos, cuando se utilice epóxico de fijación normal.
- Cuatro comas cuatro grados Celsius (4,4 °C) o menos y máximo doce grados Celsius (12 °C), cuando se utilice ligante-asfáltico.
- O menos de nueve grados Celsius (9 °C), cuando se utilice termoplástico alquídico.
- Si la humedad relativa del aire es mayor del ochenta por ciento (80 %).
- Cuando la superficie del pavimento no esté suficientemente seca.

En pavimentos nuevos con carpeta de concreto asfáltico, las tachas se pueden colocar después de que la superficie se haya abierto al tránsito por un periodo no menor de catorce días (14 d) continuos.

Tampoco se debe permitir la colocación de tachas sobre áreas de pavimento agrietadas, juntas longitudinales, transversales, fisuras, con desplazamientos o donde existan fallas del material de la base subyacente o sobre marcas viales existentes.

Además, se deben atender todas las limitaciones adicionales que establezcan los fabrican-tes del adhesivo y de las tachas.

701.4.7 Manejo ambiental

En adición a los aspectos generales indicados en el artículo 106, Aspectos ambientales, todas las labores requeridas para la instalación de tachas reflectivas, se deben realizar teniendo en cuenta lo definido en las normas y disposiciones vigentes sobre la conservación del ambiente y los recursos naturales.

Todas las actividades que se ejecuten en cumplimiento a esta especificación, deben acatar lo establecido en las normas y disposiciones ambientales. De esta manera, dichas actividades deben incluirse en los costos del proyecto; por tanto, no son objeto de reconocimiento directo en el contrato.

701.5 Condiciones para el recibo de los trabajos

701.5.1 Controles

Durante la ejecución de los trabajos, se deben adelantar los siguientes controles principales:

- Verificar el estado y funcionamiento del equipo utilizado por el constructor.
- Comprobar que todos los materiales cumplan los requisitos indicados en el numeral 701.2.
- Vigilar que las tachas no se coloquen con anterioridad a la aplicación de las líneas de demarcación.
- Revisar que las tachas queden correcta-mente colocadas y contarlas para efectos de pago.

La interventoría debe exigir al constructor, el certificado de conformidad expedido por el Organismo Nacional de Acreditación de Colombia (ONAC), o por un organismo de certificación de productos del país de origen, debidamente acreditado para certificar dichos materiales, aportado por las compañías fabricantes o lo que establezca la Superintendencia de Industria y Comercio en materia de evaluación de la conformidad. El certificado debe indicar que el producto se ha ensayado según los métodos de prueba definidos en la NTC 4745 vigente.

Las tachas seleccionadas para muestreo deben evaluarse bajo los ensayos determina-dos en la NTC 4745. Para la recepción, se debe implementar el ensayo ASTM E1696 para la medición del coeficiente de intensidad luminosa antes de la

exposición a abrasión o instalación. Los equipos retrorreflectómetros, deben tener placa calibradora vigente y debe ser generada por un laboratorio acreditado o avalado independiente.

El plan de calidad y el plan de inspección, medición y ensayo, son de obligatorio cumplimiento tal como se encuentra expresado en el numeral 103.2 del artículo 103, Responsabilidades especiales del constructor.

701.5.2 Condiciones específicas para el recibo y tolerancias

701.5.2.1 Calidad de los materiales

No se deben admitir materiales que incumplan las exigencias del numeral 701.2.

701.5.2.2 Instalación de las tachas

El interventor únicamente debe aceptar el trabajo si las tachas han sido colocadas de acuerdo con los planos, la presente especificación, sus instrucciones y si se encuentran totalmente adheridas a la superficie del pavimento a los treinta días (30 d) de su colocación.

Todas las deficiencias que presenten los trabajos deben corregirse por el constructor bajo su propia cuenta y riesgo, y aprobadas por el interventor.

701.6 Medida

Las tachas reflectivas se deben medir por unidad (u) instalada de acuerdo con los documentos del proyecto y la presente especificación, debidamente aceptadas por el interventor.

701.7 Forma de pago

El pago se debe hacer al respectivo precio unitario del contrato por toda tacha reflectiva colocada, con base en esta especificación y aprobado por el interventor. El precio unitario debe comprender todos los costos inherentes al suministro de materiales y equipos; localización y preparación de los sitios de colocación de las tachas; transportes, almacenamiento y colocación del adhesivo y las tachas; señalización temporal y ordenamiento del tránsito; limpieza, remoción, transporte y disposición de desperdicios y, en general, todo costo adicional requerido para la correcta ejecución del trabajo especificado.

El precio unitario debe incluir, igualmente, los costos de administración, imprevistos y la utilidad del constructor.

701.8 Ítem de pago

Ítem	Descripción	Unidad
701.1	Tacha reflectiva (A, B o E)	Unidad (u)

Nota: se debe elaborar un ítem para cada tipo de tacha reflectiva incluido en el contrato.

701.1Tacha reflectiva tipo E (u)

