"CONSTRUCCIÓN EN PAVIMENTO ASFÁLTICO DE LA VÍA QUE COMUNICA LA VEREDA LA VENGANZA CON LA MARGINAL DE LA SELVA, EN EL MUNICIPIO DE TAURAMENA DEPARTAMENTO DEL CASANARE"
DISEÑO DE ESTRUCTURA DE PAVIMENTO
MUNICIPIO DE TAURAMENA DEPARTAMENTO DEL CASANARE
FEBRERO DE 2024

TABLA DE CONTENIDO

1. INT	FRODUCCION	3
2. LO	CALIZACION Y DESCRIPCION DEL PROYECTO	4
3. INV	/ESTIGACIONES GEOLOGICAS Y GEOTECNICAS	5
3.1.	EXPLORACIÓN EN CAMPO	5
4. CAF	RACTERÍSTICAS GEOTÉCNICAS	6
4.1.PEF	RFIL ESTRATIGRAFICO	6
4.2.CBF	R DE DISEÑO	6
5. EST	TUDIO DE TRANSITO	8
	ANÁLISIS DE INFORMACIÓN PROPORCIONADA POR CONTEOS	
5.2.	PERIODO DE DISEÑO	8
5.3.	DISTRIBUCIÓN TÍPICA DE VEHÍCULOS	8
5.4.	TASA DE CRECIMIENTO DEL TRÁNSITO	
5.5.	FACTORES DE DAÑO POR TIPO DE VEHÍCULO	9
5.6.	TRÁNSITO ACUMULADO EN EJES EQUIVALENTES DE 80KN	
5.7.	CONFIABILIDAD	11
6. DIS	SEÑOS DE LA ESTRUCTURA DEL PAVIMENTO	12
	ÁNSITO DE DISEÑO	
6.2.CBF	R DE DISEÑO	13
6.3.PAF	RAMETROS CLIMATICOS	13
6.4.OTI	RAS VARIABLES	14
6.5.APL	LICACIÓN DEL METODO AASHTO 93'	20
7. COI	NCLUSIONES Y RECOMENDACIONES	25

1. INTRODUCCION

En el presente estudio se analizan las condiciones de tránsito actual que presenta el sector involucrado en las vías que "CONSTRUCCIÓN EN PAVIMENTO ASFÁLTICO DE LA VÍA QUE COMUNICA LA VEREDA LA VENGANZA CON LA MARGINAL DE LA SELVA, EN EL MUNICIPIO DE TAURAMENA DEPARTAMENTO DEL CASANARE", Con el fin de determinar los parámetros que se implementan en el diseño de la estructura de pavimento de la vía, teniendo en cuenta las solicitaciones a un periodo de diseño proyectado.

Para lo anterior se pretende analizar la estabilidad ante las cargas proyectadas, dando recomendaciones sobre el espesor del pavimento y mejoramiento de la cimentación, basados en la norma INVIAS y en los criterios de diseño validados mundialmente para este tipo de proyectos de ingeniería.

El propósito de este mantenimiento y mejoramiento es el de mantener las condiciones necesarias para el servicio de la infraestructura vial TERCIARIA en el municipio de Tauramena-Casanare.

En este documento se presentan los resultados de los análisis generados de los conteos, con el objetivo de determinar el Tránsito Promedio Diario Semanal y la cantidad de repeticiones esperadas al periodo de diseño del proyecto en mención.

2. LOCALIZACION Y DESCRIPCION DEL PROYECTO

El proyecto "CONSTRUCCIÓN EN PAVIMENTO ASFÁLTICO DE LA VÍA QUE COMUNICA LA VEREDA LA VENGANZA CON LA MARGINAL DE LA SELVA, EN EL MUNICIPIO DE TAURAMENA DEPARTAMENTO DEL CASANARE", pretende mejorar en total 2100 metros de la vía que se encuentran en mal estado en el municipio de Tauramena.

A continuación, se presenta la localización general de los tramos a intervenir:

	CUA	DRO DE COORDE	NADAS
VIA	LONGITUD	ONGITUD COORDENADAS NIGO COORDENAD	
		N = 4*5824.40* E = 72*4057.60*	N = 4"58"14.70" E = 72"3952.60"
	2100 M	ABSCISA INIGO K0+000	ABOCISA FINAL K2+100

Ilustración 1. Ubicación tramos a intervenir

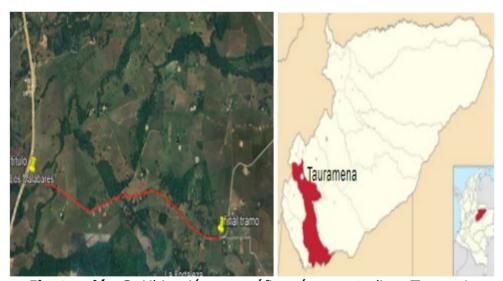


Ilustración 2. Ubicación geográfica vía en estudio – Tramo 1.

3. INVESTIGACIONES GEOLOGICAS Y GEOTECNICAS

Se realizó visita de inspección preliminar al sitio estudiado con el objeto de determinar las características físicas, geológicas y geotécnicas generales del área.

Se realizó exploración del proyecto "CONSTRUCCIÓN EN PAVIMENTO ASFÁLTICO DE LA VÍA QUE COMUNICA LA VEREDA LA VENGANZA CON LA MARGINAL DE LA SELVA, EN EL MUNICIPIO DE TAURAMENA DEPARTAMENTO DEL CASANARE", donde se proyecta el mejoramiento con pavimento flexible.

La vía se encuentra localizada en un terreno básicamente plano y en algunos tramos ondulados, algunos montañosos. No se evidenciaron asentamientos ni problemas geotécnicos que puedan afectar la estructura.

Para la caracterización de los materiales de subrasante y del afirmado existente sobre los cuales se construirá la estructura de pavimento en la vía, se utilizó la información de las exploraciones geotécnicas realizadas en la zona y consignadas en el presente informe.

Para el presente estudio se practicaron 9 apiques para la vía en estudio de profundidades de 2 metros. Una vez realizada la identificación y descripción visual de las muestras, se seleccionaron muestras en bolsa representativas para efectuarles los siguientes ensayos, obteniendo así una caracterización y capacidad de soporte del suelo a lo largo del tramo vial en estudio.

- Humedad Natural Norma I.N.V. E-.122.
- Límites de consistencia Normas I.N.V. E-125 y E-126.
- Porcentaje que pasa el Tamiz No. 200 Norma I.N.V. E-123.
- Granulometrías, de acuerdo con las normas I.N.V. E-122/E-123.
- CBR Muestra Inalterada Norma I.N.V. E-169.

3.1. EXPLORACIÓN EN CAMPO

Para el diseño de las estructuras de pavimentos se procesó tanto la información de campo como de laboratorio. En la tabla a continuación se presenta la localización de la exploración geotécnica efectuada para el diseño de la estructura de pavimento.

APIQUE	TRAMO	ABCISA
1	1	K+
2	1	K+250
3	1	K+500
4	1	K+750
5	1	K1+000
6	1	K1+250
7	1	K1+500
8	1	K1+750
9	1	K2+000

Tabla 1. Localización de apiques realizados para la vía en estudio.

4. CARACTERÍSTICAS GEOTÉCNICAS

En este capítulo se resumen los criterios y parámetros tenidos en cuenta para el dimensionamiento de la estructura del pavimento.

Como criterio para establecer el CBR representativo de la subrasante, se utilizaron tanto las pruebas In Situ (CBR de campo) como ensayos de laboratorio (granulometría y propiedades índice) del material analizado.

4.1. PERFIL ESTRATIGRAFICO

Una vez realizadas las exploraciones geotécnicas en las zonas de estudio se encontró un perfil estratigráfico definido en la superficie por un relleno de espesor variable seguido de una capa de Suelo ARCILLOSO (A-2-6 y A-2-7) para el tramo.

4.2. CBR DE DISEÑO

Con el fin de determinar la capacidad portante del suelo de subrasante o competencia mecánica de los materiales de fundación del pavimento, se tomaron por cada sondeo moldes de CBR inalterados, localizados directamente en los sitios de la obra y sobre la superficie de la sub-rasante, aclarando, que se realizaron sobre el terreno natural y no sobre los rellenos.

Los CBR obtenidos que se deben tener en cuenta para el diseño del pavimento en los tramos viales en estudio para conocer la calidad de la subrasante, se muestran a continuación.

PROCESO DE DETERMINACION DEL CBR

- 1. Determinación de la humedad óptima y densidad máxima de las muestras de suelo mediante el ensayo Proctor modificado o normal.
- 2. Añadir agua a una muestra de suelo para alcanzar la humedad óptima.
- 3. Compactar la muestra en tres moldes CBR estandarizados de 15,24 cm de diámetro y 17,78 cm de altura. La muestra se compacta en 3 capas por molde siendo la energía de compactación de cada molde de 15, 30 o 60 golpes por capa mediante una maza de 2,5 kg que se deja caer libremente desde una altura de 305 mm.
- 4. Posteriormente se enraza el molde, se desmonta y se vuelve a montar invertido.
- 5. Se sumergen los moldes en agua (en algunas modalidades de ensayo no se sumerge la muestra).
- 6. Colocación de la placa perforada y el vástago así como los pesos necesarios para calcular la sobrecarga calculada.
- 7. Colocar el trípode de medida sobre el borde del molde, coincidiendo el vástago del microcomparador.
- 8. Toma de medidas diarias del microcomparador durante al menos 4 días.
- 9. Sacar la muestra del agua, escurrir y secar exteriormente.
- 10. Aplicar la carga sobre el pistón de penetración mediante la **prensa CBR** y tomar las lecturas de la curva presión penetración.
- 11. Una vez finalizado el ensayo se debe presentar los resultados en una gráfica densidad seca índice CBR similar a la mostrada a continuación. También conviene mostrar los datos de compactación, humedad, densidad, hinchamiento y absorción

(revisar resultados en el informe del ensayó de cbr anexo en la carpeta de ensayos en el estudio de suelos)

APIQUE	TRAMO	A BCISA	PROFUNDIDA D (m)	CBR (%)
1	1	K+	2	3,35%
2	1	K+250	2	3,72%
3	1	K+500	2	4,30%
4	1	K+750	2	3,15%
5	1	K1+000	2	4,01%
6	1	K1+250	2	3,29%
7	1	K1+500	2	3,87%
8	1	K1+750	2	3,78%
9	1	K2+000	2	3,44%
	PR	OMEDIO		3,66%

Tabla 2. Valores de CBR para el tramo.

Para los tramos en estudio, mediante correlaciones a partir de los ensayos realizados en cada sondeo se calculará el valor del CBR de la subrasante.

NO se detectó presencia del nivel freático hasta la profundidad explorada.

Por último, cabe mencionar que una vez realizados los análisis geotécnicos se determinó que para de la vía en el municipio de Tauramena, departamento de Casanare, no se identificaron riesgos por movimientos en masa e inestabilidad de taludes, ni ningún otro riesgo geotécnico en general como deslizamientos, zonas de erosión o puntos críticos.

5. ESTUDIO DE TRANSITO

5.1. ANÁLISIS DE INFORMACIÓN PROPORCIONADA POR CONTEOS

Con los resultados obtenidos de los conteos manuales realizados en las estaciones de conteo utilizadas, se calcula el volumen de tránsito vehicular en forma de TPDs. y su composición vehicular por tipo de vehículo, la desviación estándar, el total de los camiones y su discriminación de acuerdo con las diferentes categorías.

5.2. PERIODO DE DISEÑO

Teniendo en cuenta los planes de mantenimientos departamental y municipal, se establece un periodo de diseño de 20 años como vida útil del pavimento, con una tasa de crecimiento del 3% acorde con la economía regional de la zona en estudio.

5.3. DISTRIBUCIÓN TÍPICA DE VEHÍCULOS

Para el caso del proyecto "CONSTRUCCIÓN EN PAVIMENTO ASFÁLTICO DE LA VÍA QUE COMUNICA LA VEREDA LA VENGANZA CON LA MARGINAL DE LA SELVA, EN EL MUNICIPIO DE TAURAMENA DEPARTAMENTO DEL CASANARE", el resumen de la distribución de vehículos obtenida mediante los conteos de las estaciones de aforo se presenta a continuación.

	ESTACION #1 TRAMO 1									
FECHA DIA TIPO DE VEHICULO										
FECHA	DIA	AUTOS	BUSES	C2 P	C2 G	C3	C4	C5	>C5	TOTAL
5-feb-24	Lunes	37	18	19	4	8	3	0	0	89
6-feb-24	Martes	33	14	16	6	7	16	1	0	93
7-feb-24	Miércoles	37	12	13	5	6	3	2	0	78
8-feb-24	Jueves	36	9	18	11	13	9	5	0	101
9-feb-24	Viernes	36	18	21	7	2	0	2	0	86
10-feb-24	Sábado	35	17	22	8	11	8	1	0	102
11-feb-24	Domingo	44	15	26	8	9	6	3	0	111
TOTAL CO	TOTAL CONTEO		103	135	49	56	45	14	0	660
TOTAL	ΓPD	37,0	15,0	19,0	7,0	8,0	6,0	2,0	0,0	94,0

5.4. TASA DE CRECIMIENTO DEL TRÁNSITO

La tasa de crecimiento del tránsito se adopta teniendo en cuenta las recomendaciones del INVIAS para vías con bajos volúmenes de tránsito. En la Tabla 8 se presentan las tasas de crecimiento para los niveles de transito considerados en la metodología de diseño. Para el caso de estudio, se ha adoptado una tasa de crecimiento del tránsito del 3%, además de tener en cuenta el último informe emitido de la tasa de crecimiento del sector del parque automotor.

Nivel de tránsito	Tasa de crecimiento
T1	2.0
T2	3.0

Tabla 3. Tasa promedio de crecimiento del transito

5.5. FACTORES DE DAÑO POR TIPO DE VEHÍCULO

Para la conversión de vehículos a ejes equivalentes de 80Kn se utilizaron los factores de daño por tipo de vehículo recomendado por el INVIAS, estos se presentan en la Tabla 9.

Tina da vahíaula	Factor de daño (FD)				
Tipo de vehículo	Vacío	Cargado			
Autos		0.0			
Bus grande		1.0			
C2p	0.01	1.01			
C2g	0.08	2.72			
C3-C4	0.24	3.72			
C5	0.25	4.88			
> C5	0.26	5.23			

Fuente: Elaboración propia con base en información del Instituto Nacional de Vías

Tabla 4. Factor daño por tipo de vehículo

5.6. TRÁNSITO ACUMULADO EN EJES EQUIVALENTES DE 80KN

Para el cálculo del tránsito equivalente se procedió a tomar la distribución de vehículos arrojados del estudio de tránsito realizado y aplicado el método de la AASTHO para calcular el número de ejes equivalente se tuvo en cuenta el periodo de diseño, la tasa de crecimiento, el factor por sentido y el factor por carril y se utilizó la siguiente expresión:

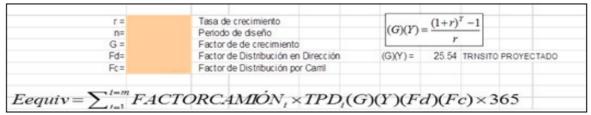


Ilustración 6. Expresión utilizada para el cálculo de ejes equivalentes.

	CÁLCULO DE 1	TRÁSITO DIAF	RIO EQUIVALE	NTE Y TOTAL		
OBRA:	LA VERED	A LA VENGAI	nza con la n	ILTICO DE LA VÍA C MARGINAL DE LA S RTAMENTO DEL CA	ELVA, EN EL	
TOTAL CONTEO	660		TASA DE CRE	CIMIENTO %	3	
FACTOR SENTIDO	0,5		FACTOR CAR		1	
ESTACION	#1			DISEÑO (AÑOS)	20	
VEHÍCULOS	PORCENTAJE	NUM VEHICULOS DIARIOS	FACTOR DAÑO	TRANSITO EQUIVALENTE DIARIO	NUMERO DE VEHÍCULOS ACUMULADOS	
VEHÍCULO	%	660				
AUTOS	39,09%	258	0	0	0,0	
BUSES	15,61%	103	1	103	72156,6	
CAMIONES	45,30%	299			0,0	
C2 PEQUEÑO	45,15%	135	1,01	136,35	95519,9	
C2 GRANDE	16,39%	49	2,72	133,28	93369,2	
C3-C4	33,78%	101	3,72	375,72	263210,3	
C5	4,68%	14	4,88	68,32	47861,5	
	TRANSITO EQUIVALENTE DIARIO 748,35					
TRÁ	572117,4	5,72E+05				

5.7. CONFIABILIDAD

✓ Tiene en cuenta el grado de incertidumbre que se presenta durante la estimación de las variables de diseño.

Tine de corretore	Nivel de confiabilidad R (%)			
Tipo de carretera	Urbana	Interurbana		
Autopistas y carreteras importantes	85.0 - 99.9	80.0 - 99.9		
Arterias principales	80.0 - 99.9	75.0 - 95.0		
Colectoras	80.0 - 95.0	75 0 - 95 0		
Locales	50.0 - 80.0	50.0 - 80.0		

R (%)	50	70	75	80	85	90	92	94	95	98	99.99
Zr	0.000	-0.524	-0.674	-0.841	-1.037	-1.282	-1.405	-1.555	-1.645	-2.054	-3.750

El nivel de confianza para este proyecto se definiera en un 90 % ya que la información recolectada es reciente en los aforos realizados, se clasifica la vía terciaria.

TRANSITO ACUMULADO EN EJES EQUIVALENTE PARA EL PERIODO DE DISEÑO

Nivel o	le confianza	90%		Zr	1,28155157	
Año	Teq diario proyectado	Error de pronóstico	Zr	Error proyectado	Límite superior	NESE
2024	294	71	1,2816	91	67	11.885
2025	317	72	1,2816	92	77	13.659
2026	340	72	1,2816	92	87	15.433
2027	363	72	1,2816	93	97	17.207
2028	386	73	1,2816	93	107	18.981
2029	409	73	1,2816	94	117	20.755
2030	432	74	1,2816	94	127	22.529
2031	455	74	1,2816	95	137	24.302
2032	478	75	1,2816	95	147	26.076
2033	501	75	1,2816	96	157	27.850
2034	524	75	1,2816	97	167	29.624
2035	547	76	1,2816	97	177	31.398
2036	570	76	1,2816	98	187	33.172
2037	593	77	1,2816	99	197	34.946
2038	616	77	1,2816	99	207	36.720
2039	639	78	1,2816	100	217	38.494
2040	662	78	1,2816	101	227	40.268
2041	685	79	1,2816	101	237	42.041
2042	708	80	1,2816	102	247	43.815
2043	748	80	1,2816	103	257	45.589
				Σ	3.240	572.117

6. DISEÑOS DE LA ESTRUCTURA DEL PAVIMENTO

El Pavimento es una estructura conformada por varias capas de materiales seleccionados, construida entre la subrasante y la superficie de rodamiento. Los materiales que constituyen el pavimento deben cumplir ciertas especificaciones con el fin de resistir adecuadamente los esfuerzos transmitidos por las cargas repetitivas del tránsito y la acción del intemperismo; igualmente debe proporcionar una circulación cómoda y segura a los usuarios de la vía. Por consiguiente, del buen dimensionamiento de cada una de las capas que conforman la estructura, dependerá básicamente el desempeño funcional y duración de éste durante su puesta en servicio.

Para el diseño de la estructura del pavimento, se consideró la utilización de la metodología del Manual de Diseño de Pavimentos de asfalto para Vías con Bajos, volumenes de Tránsito, del Instituto Nacional de Vías, que establece un catálogo de estructuras en función de las variables más importantes que inciden en la determinación de espesores y cualidades de las capas de un pavimento. Estos catálogos de diseño se construyeron con base en los métodos de diseño más conocidos en el país como son el de la Portland Cement Association-PCA versión 1984 y el de la American Association of State Highway And Transportation Officials-AASHTO versión 1993.

Los parámetros de diseño que constituyen la metodología se relacionan a continuación:

- 5.7.1. El tránsito y el periodo de diseño.
- 5.7.2. Las características de resistencia de la subrasante.
- 5.7.3. Tipo de material de soporte para el pavimento.
- 5.7.4. Resistencia a la flexión del ASFLAT.

Para este diseño nos guiaremos por el método de la **AASHTO 1993**

Los valores de cada uno de estos parámetros establecidos para este proyecto particular se describen a continuación:

6.1. TRÁNSITO DE DISEÑO

Esta variable, de acuerdo a lo establecido en el Capítulo 5 del presente documento y considerando el valor del número acumulado de ejes equivalentes en el carril de diseño durante el periodo de diseño de veinte (20) años, los cálculos se encuentran en el capítulo anterior.

6.2. CBR DE DISEÑO

Para el diseño del pavimento, el manual considera tomar un percintel del cbr de acuerdo a la cantidad de apiques y de muestras que se encuentren.

Para el caso específico de este proyecto se tomó un cbr de diseño del 3.6 % ya que este era el promedio de todos los CBR obtenidos y su valor no variaba mas de 0.5 puntos.

CBR	n	fi	% valores mayores o iguales
3,6	1	10,0%	100,00%
3,6	1	10,0%	90,00%
3,6	1	10,0%	80,00%
3,6	1	10,0%	70,00%
3,6	1	10,0%	60,00%
3,6	1	10,0%	50,00%
3,6	1	10,0%	40,00%
3,6	2	20,0%	30,00%
3,6	1	10,0%	10,00%
Σ	10	100,0%	

Tabla de percentiles instituto del asfalto

6.3. PARAMETROS CLIMATICOS

	T (°C)	P (mm)	Altitud
Tauramena	33	221	460
Casanare	33	300	350

6.4. OTRAS VARIABLES

1. definir la confiabilidad de nuestro proyecto

R	Zr (fractil)
50%	0,000
70%	0,524
80%	0,842
85%	1,036
90%	1,282
92%	1,405
94%	1,555
95%	1,645
98%	2,054
99%	2,326

✓ Tiene en cuenta el grado de incertidumbre que se presenta durante la estimación de las variables de diseño.

Tino de corretore	Nivel de confiabilidad R (%)			
Tipo de carretera	Urbana	Interurbana		
Autopistas y carreteras importantes	85.0 - 99.9	80.0 - 99.9		
Arterias principales	80.0 - 99.9	75.0 - 95.0		
Colectoras	80.0 - 95.0	75.0 - 95.0		
Locales	50.0 - 80.0	50.0 - 80.0		

R (%)	50	70	75	80	85	90	92	94	95	98	99.99
Zr	0.000	-0.524	-0.674	-0.841	-1.037	-1.282	-1.405	-1.555	-1.645	-2.054	-3.750

2. error normal combinado SO

D	S0		
Proyecto de pavimento	flexible	rigido	
	0,40-0,5	0,3-0,4	
construccion nueva	0,45	0,35	
sobrecapas	0,5	0,4	

✓ El error normal combinado (So), tiene en cuenta la desviación del diseño, variación de propiedades de materiales y de subrasante, variación de la estimación del tránsito y de las condiciones ambientales.

	S ₀			
Proyecto de pavimento	Flexible	Rígido		
	0.40 - 0.50	0.30 - 0.40		
Construcción nueva	0.45	0.35		
Sobrecapas	0.50	0.40		

3. serviciabilidad de nuestro proyecto

tipo de vía	servi	ciabilidad final
autopista	2,5	3
carretera	2	2,5
zonas industri	ales	
pav urbano industrial	1,5	2
pav urbano secundario	1,5	2

ΔPSI (Índice de servicio)	2
PO	4,2
PF	2,2

- ✓ El estado de serviciabilidad se evalúa cuantitativamente con un número entre 0 y 5.
- ✓ Por lo general se parte de un valor inicial de 4.0 a 4.2 (estado bueno de la vía) y se tiene un valor entre 1.5 y 2.5 para la falla funcional del pavimento.
- ✓ La dimensión del pavimento aumenta cuando el diseñador asume un ∆PSI pequeño.

Tipo de vía	Serviciabilidad final
Autopista	2.5 - 3.0
Carreteras	2.0 - 2.5
Zonas indust	riales
Pavimento urbano industrial	1.5 - 2.0
Pavimento urbano secundario	1.5 - 2.0

 $\Delta PSI = P_0 - P_f$

Donde:

 ΔPSI : Índice de servicio. P_0 : Serviciabilidad inicial. P_f : Serviciabilidad final.

4. transito

nota: lo definimos dependiendo si tenemos un aforo realizado o por la serie histórica del invias dependiendo la vía

ejes equivalentes al final del periodo de **572117** diseño

nota: el número de ejes equivalentes lo tomamos del estudio de tránsito.

5. Subrasante (cálculo del módulo resiliente)

nota: nuestro caso no tenemos ensayo triaxial, lo determinamos mediante el cbr promedio de nuestro proyecto

- ✓ La subrasante se caracteriza, a partir del módulo resiliente.
- ✓ El número de ensayos para cada tipo de suelo debe estar entre 6 y 8.

Caso 1: MR medido en condiciones óptimas

$$MR_D = F_{amb} \cdot MR_{opt}$$

Caso 2: MR medido in situ

$$MR_D = \frac{F_{amb}}{F_{amb} \ del \ mes} \cdot MR_{in \ situ}$$

Caso 3: MR sumergido

$$MR_D = MR_{sumergido}$$

6. numero estructural

nota: para no iterar la formula, utilizamos el software AASHTO 93'

numero estrucutral producido por el transito (SN)

$$\log(W_{18}) = Z_r \times S_0 + 9.36 \times \log(SN_i + 1) - 0.20 + \left[\frac{\log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \left(\frac{1094}{(SN_i + 1)^{5.19}}\right)} \right] + 2.32 \times \log(M_r) - 8.07$$

Donde:

W₁₈: Número de aplicaciones de ejes equivalentes durante el periodo de diseño.

Z_r: Parámetro estadístico asociado a la incertidumbre del índice de servicio.

S₀: Desviación estándar total de la distribución normal de errores en variables de diseño.

SN_i: Número estructural de la capa i.

ΔPSI: Diferencia entre los índices de servicio inicial y final.

Mr: Módulo resiliente, en psi.

numero estrucutral de la estrctura (SN)

✓ El número estructural que proporciona la estructura de pavimento está dado por la siguiente ecuación:

$$SN = a_1h_1 + a_2m_2h_2 + a_3m_3h_3$$

Donde:

SN: Número estructural del pavimento.

 a_{1},a_{2},a_{3} : Coeficientes estructurales de capa asfáltica, base y sub-base.

 h_1, h_2, h_3 : Espesores de capa asfáltica, base y sub-base, en pulgadas.

 m_2, m_3 : Coeficientes de drenaje de base y sub-base.

а	entre mas rígido sea la capa mayor será su coficiente estrcutural
h	espesores de las capas estrcutural
	calidad de drenaje de la via (base y sub
m	base

$$SN_{ extit{Tránsito}} \leq SN_{ extit{Estructura}}$$

7. drenaj

е

nota: definimos el % de tiempo que la estructura está expuesta a agua, esto depende de los días en el año que llueve.

importante: el drenaje nos define el deterioro de la resistencia de las capas que estamos analizando

- ✓ La calidad del drenaje se evalúa mediante los coeficientes de drenaje (mi) para las capas de base y sub-base granular.
- ✓ Los valores se seleccionan con base en las características del material, la calidad del drenaje y el porcentaje de tiempo en el que la estructura del pavimento está expuesta a altos niveles de humedad.
- ✓ En estructuras semirrígidas (bases estabilizadas) el coeficiente de drenaje se asume como 1.0 por se impermeable.

Calidad del drenaje	Tiempo que tarda el agua en ser evacuada		
Excelente	2 horas		
Bueno	1 día		
Regular	1 semana		
Pobre	1 mes		
Muy malo	El agua no evacúa		

definimos el valor medio multi anual

 Días de
 ene.
 feb.
 mar.
 abr.
 may.
 jun.
 jul.
 ago.

 Lluvia
 4,5 días
 6,8 días
 12,7 días
 19,0 días
 21,4 días
 19,0 días
 17,3 días
 16,3 días

117 días con lluvia al año

Características del drenaie Porcentaje del tiempo que la estructura del pavimento está expuesta a grados de humedad próxima a la saturación

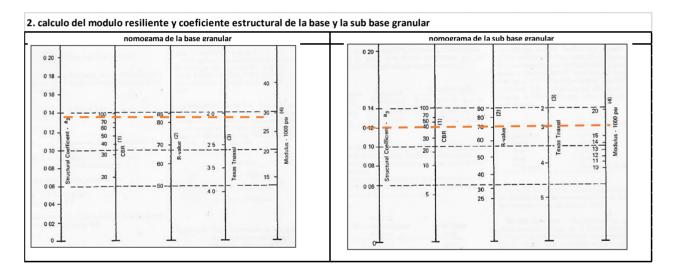
dei drenaje	Menos del 1%	1 - 5%	5 - 25%	Mas del 25%
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
Muy malo	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

Valores de m para corregir los coeficientes estructurales de bases y sub-bases granulares

8. temperatura promedio anual del lugar del proyecto

Promedio ene. feb. mar. abr. may. jun. jul. ago. sept. oct. nov. dic.

Máxima 32°C 33°C 32°C 30°C 29°C 28°C 28°C 29°C 30°C 30°C 30°C 29°C 30°C


Temp. 26°C <u>27°C</u> <u>27°C</u> 26°C 25°C <u>24°C</u> <u>24°C</u> 25°C 25°C 25°C 25°C 25°C

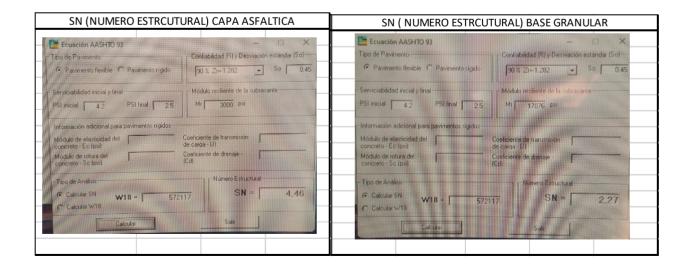
Mínima 22 °C 23 °C 23 °C 23 °C 22 °C 22 °C 21 °C 21 °C 22 °C 22 °C 22 °C 22 °C

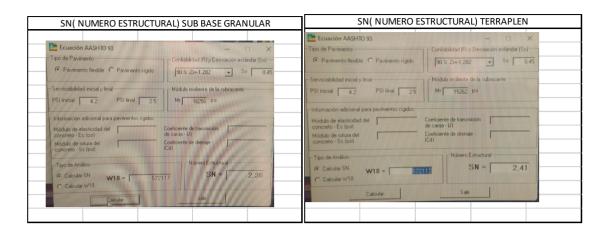
	t prom
datos	mensual
enero	26
febrero	27
marzo	27
abril	26
mayo	25
junio	24
julio	24
agosto	25
septiembre	25
octubre	25
noviembre	25
diciembre	25
promedio	25,33333

6.5. APLICACIÓN DEL METODO AASHTO 93'

Datos iniciales							
W ₁₈	572.117 NT3						
R	90%						
Zr	1,28155157						
So	0,45						
Ро	4,2						
Pt	2,5						
∆PSI	1,7						
CBR(%)	3,60						
Mr subrasante(Psi)	5.800						

nota: teniendo en cuenta que el numero de ejes equivalentes es menor a 1,000,000 implica una base granular clase B exige que el cbr que el cbr 95%								
MR base granular	30000	PSI						
a2 base granular								


nota: sub base cla	nota: sub base clase B para nuestro transito implica un sbr minimo del 40 %						
Mr sub base	17000	psi					
a2 sub base	0,12						


3. calculo del modulo resiliente de la capa asfaltica							
	$ai = 0.7304 - 0.1271 \cdot Ln(TMAP)$						
	TMAP (°C)	25,3333333					
	a1	0,320					
C.A.	$E_{CA} = \left(\frac{ai}{0,0052}\right)^{\frac{1}{0,555}}$						
	E _{CA} (MPa)	1669,94646					
	E _{CA} (Psi)	249494					
DC A>-1000/	a2	0,140					
BG_A>=100%	E _{BG} (Psi)	30527					
SBG_A>=60%	a3	0,126					
	E _{SBG}	17876					

4. calculo de los coef	icientes de d	renaje							
% dias de lluvia	as de Iluvia 117 32,05 %			caracteristica del drenaje : Bu			Bueno	ieno	
	365								
0	Pord	entaje de	l tiempo	que la	estruc	tura de	el pav	imen	to está
Característica	is ex	puesta a g	grados d	e hume	dad pr	óxima	a la s	satur	ación
del drenaje	Meno	s del 1%	1 - 9	5%	5 ·	- 25%		Mas	del 25%
Excelente	1.40	- 1.35	1.35 -	1.30	1.30	- 1.2	0	1	.20
Bueno	1.35	- 1.25	1.25 -	1.15	1.15	- 1.0	0	1	.00
Regular	1.25	- 1.15	1.15 -	1.05	1.00	0.8	0	C	0.80
Pobre	1.15	- 1.05	1.05 -	0.80	0.80	0.6	0	0.60	
Muy malo	1.05	- 0.95	0.95 -	0.75	0.75	- 0.4	0	0.40	
Valores de m pa	ara corregi	r los coefic	ientes est	tructura	les de b	ases y	sub-b	ases	granulares
m2	1								
m3	1								
m4	1								
m5	1								

2,2) Números estructurales capas mediante software

S1 (Req)	CARPETA	S2 (Re	q) BASE	S3 (Req) SUB BASE		UB BASE S3 (Req) S		S3 (Req) SUB BASE	
Fórmula	1,0950957	Fórmula	1,1555383	Fórmula	1,15859265	Fórmula	0,94671335	Fórmula	1,15377429
SN	3,40	SN	4,24	SN	4,39	SN	4,49	SN	6,44

CALCULO DE ESPESORES DE CAPAS

CAPA	E (Psi)	ai	mi	h (in)	h (cm)	SNeff	SNreq
CA	249.494	0,320	1,00	4	9,91	1,25	3,40
BG_A>=95%	30.527	0,140	1,00	6	14,73	0,81	4,24
SBG_A>=40%	17.876	0,126	1,00	8	19,81	0,98	4,39
TERRAPLEN	16.256	0,117	1,00	10	24,89	1,15	4,49
SBR	5.800						

Espesores finales

САРА	ESPESOR (cm)
Asfalto natural, carpeta asfaltica	10
Base granular BG _B	15
Subbase granular SBG_B	20
Material seleccionado Tmax 4" Terraplen	25
TOTAL	70

• Espesor de la capa asfáltica

$$h_1 = \frac{SN_1}{a_1}$$

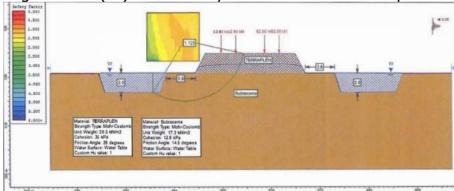
• Espesor de la capa de base granular

$$h_2 = \frac{SN_2 - SN_1^*}{a_2 \cdot m_2}$$

• Espesor de la capa de subbase granular

$$h_3 = \frac{SN_3 - SN_2^*}{a_3 \cdot m_3}$$

7. CONCLUSIONES Y RECOMENDACIONES


- ✓ Para el diseño de las estructuras de soporte, en la vía en estudio se considera un valor de CBR de diseño (california Bearing Ratio) de 3.6 %.
- ✓ Para el tramo en estudio en el estudio de tránsito se obtuvo 572.117 número de ejes equivalentes de 80 kN o 18 kips al final del periodo de diseño.
- ✓ Para el diseño de la estructura del pavimento se usó el método de la AASHTO93 el cual es un método que experimental que calcula el espesor de la estructura de acuerdo al desgaste que esta sufre por el número de repeticiones de ejes que le causan daño y deformación al pavimento.
- ✓ Se tomo una confianza de 90 %, esto de acuerdo al nivel de importancia de la vía, ya que es una vía terciaria.
- ✓ La estructura a construir es la siguiente.

- ✓ Cabe mencionar que los espesores obtenidos cumplen para las exigencias del tránsito, condiciones climáticas y propiedades de materiales, base, subbase y subrasante.
- ✓ Para que la vía tenga un buen funcionamiento se deben realizar actividades de mantenimiento por lo menos una vez al año, en donde se deben remover capa vegetal y material orgánico que se encuentre durante la inspección debida.
- ✓ Si se debe modificar algún diseño en la vía, por algún factor topográfico no contemplado en el diseño, por favor remitir el cambio para verificar que el nuevo diseño cumpla con las especificaciones dadas por el INVIAS.
- ✓ En la etapa constructiva, se requiere llevar un control para chequear que el proceso constructivo se cumpla de acuerdo a las especificaciones técnicas

requeridas.

- ✓ La calidad y construcción de los materiales requeridos en la estructura de pavimento, deberán cumplir a cabalidad con las especificaciones para construcción de carreteras emitidas por el Instituto Nacional de Vías.
- ✓ Los espesores propuestos a en el diseño se hicieron para cumplir la demanda de ejes equivalentes en el periodo de diseño de la estructura, se aclara que el mejoramiento y la estructura de terraplén propuestos permiten aparte de alzar la vía, en los estudios geotécnico e hidráulico se justifica técnicamente la necesidad de alzar la vía.
- ✓ Condiciones del terraplén: Altura h=2.5m, pendiente del talud I :2, saturado con sismo y aplicación de cargas sobre la corona de la vía.
- ✓ El hecho de que la profundidad de excavación sea muy pequeña (2m), que se realice con taludes inclinados y a una distancia de la base del terraplén; garantiza que no se presente ningún tipo de problema de inestabilidad en la estructura de la vía ni en sus áreas perimetrales, tal como se muestra en el análisis de estabilidad realizado para la sección típica y en condiciones críticas de presencia de agua, ocurrencia de sismo y aplicación de cargas sobre la corona del terraplén para simular el tránsito de vehículos, cuvo Factor de Seguridad mínimo (FS) es mayor al requerido de 1,05.

✓ El análisis de estabilidad realizado para la sección típica recomendada para la franja de extracción de material de préstamo lateral arroja un Factor de seguridad de l, 128; indicando que la geometría recomendada es estable y no incide de manera desfavorable sobre la estabilidad de la estructura de la vía.

